On Thu, Dec 11, 2025 at 01:51:04PM +0100, Melbin K Mathew wrote:
The virtio vsock transport currently derives its TX credit directly from
peer_buf_alloc, which is populated from the remote endpoint's
SO_VM_SOCKETS_BUFFER_SIZE value.

On the host side, this means the amount of data we are willing to queue
for a given connection is scaled purely by a peer-chosen value, rather
than by the host's own vsock buffer configuration. A guest that
advertises a very large buffer and reads slowly can cause the host to
allocate a correspondingly large amount of sk_buff memory for that
connection.

In practice, a malicious guest can:

 - set a large AF_VSOCK buffer size (e.g. 2 GiB) with
   SO_VM_SOCKETS_BUFFER_MAX_SIZE / SO_VM_SOCKETS_BUFFER_SIZE, and

 - open multiple connections to a host vsock service that sends data
   while the guest drains slowly.

On an unconstrained host this can drive Slab/SUnreclaim into the tens of
GiB range, causing allocation failures and OOM kills in unrelated host
processes while the offending VM remains running.

On non-virtio transports and compatibility:

 - VMCI uses the AF_VSOCK buffer knobs to size its queue pairs per
   socket based on the local vsk->buffer_* values; the remote side
   can’t enlarge those queues beyond what the local endpoint
   configured.

 - Hyper-V’s vsock transport uses fixed-size VMBus ring buffers and
   an MTU bound; there is no peer-controlled credit field comparable
   to peer_buf_alloc, and the remote endpoint can’t drive in-flight
   kernel memory above those ring sizes.

 - The loopback path reuses virtio_transport_common.c, so it
   naturally follows the same semantics as the virtio transport.

Make virtio-vsock consistent with that model by intersecting the peer’s
advertised receive window with the local vsock buffer size when
computing TX credit. We introduce a small helper and use it in
virtio_transport_get_credit(), virtio_transport_has_space() and
virtio_transport_seqpacket_enqueue(), so that:

   effective_tx_window = min(peer_buf_alloc, buf_alloc)

This prevents a remote endpoint from forcing us to queue more data than
our own configuration allows, while preserving the existing credit
semantics and keeping virtio-vsock compatible with the other transports.

On an unpatched Ubuntu 22.04 host (~64 GiB RAM), running a PoC with
32 guest vsock connections advertising 2 GiB each and reading slowly
drove Slab/SUnreclaim from ~0.5 GiB to ~57 GiB and the system only
recovered after killing the QEMU process.

With this patch applied, rerunning the same PoC yields:

 Before:
   MemFree:        ~61.6 GiB
   MemAvailable:   ~62.3 GiB
   Slab:           ~142 MiB
   SUnreclaim:     ~117 MiB

 After 32 high-credit connections:
   MemFree:        ~61.5 GiB
   MemAvailable:   ~62.3 GiB
   Slab:           ~178 MiB
   SUnreclaim:     ~152 MiB

i.e. only ~35 MiB increase in Slab/SUnreclaim, no host OOM, and the
guest remains responsive.

Fixes: 06a8fc78367d ("VSOCK: Introduce virtio_vsock_common.ko")
Suggested-by: Stefano Garzarella <[email protected]>
Signed-off-by: Melbin K Mathew <[email protected]>
---
net/vmw_vsock/virtio_transport_common.c | 27 ++++++++++++++++++++++---
1 file changed, 24 insertions(+), 3 deletions(-)

Changes LGTM, but the patch seems corrupted.

$ git am 
./v3_20251211_mlbnkm1_vsock_virtio_cap_tx_credit_to_local_buffer_size.mbx
Applying: vsock/virtio: cap TX credit to local buffer size
error: corrupt patch at line 29
Patch failed at 0001 vsock/virtio: cap TX credit to local buffer size

See also https://patchwork.kernel.org/project/netdevbpf/patch/[email protected]/

Stefano


diff --git a/net/vmw_vsock/virtio_transport_common.c 
b/net/vmw_vsock/virtio_transport_common.c
index dcc8a1d58..02eeb96dd 100644
--- a/net/vmw_vsock/virtio_transport_common.c
+++ b/net/vmw_vsock/virtio_transport_common.c
@@ -491,6 +491,25 @@ void virtio_transport_consume_skb_sent(struct sk_buff 
*skb, bool consume)
}
EXPORT_SYMBOL_GPL(virtio_transport_consume_skb_sent);

+/* Return the effective peer buffer size for TX credit computation.
+ *
+ * The peer advertises its receive buffer via peer_buf_alloc, but we
+ * cap that to our local buf_alloc (derived from
+ * SO_VM_SOCKETS_BUFFER_SIZE and already clamped to buffer_max_size)
+ * so that a remote endpoint cannot force us to queue more data than
+ * our own configuration allows.
+ */
+static u32 virtio_transport_tx_buf_alloc(struct virtio_vsock_sock *vvs)
+{
+       return min(vvs->peer_buf_alloc, vvs->buf_alloc);
+}
+
u32 virtio_transport_get_credit(struct virtio_vsock_sock *vvs, u32 credit)
{
        u32 ret;
@@ -499,7 +518,8 @@ u32 virtio_transport_get_credit(struct virtio_vsock_sock 
*vvs, u32 credit)
                return 0;

        spin_lock_bh(&vvs->tx_lock);
-       ret = vvs->peer_buf_alloc - (vvs->tx_cnt - vvs->peer_fwd_cnt);
+       ret = virtio_transport_tx_buf_alloc(vvs) -
+               (vvs->tx_cnt - vvs->peer_fwd_cnt);
        if (ret > credit)
                ret = credit;
        vvs->tx_cnt += ret;
@@ -831,7 +851,7 @@ virtio_transport_seqpacket_enqueue(struct vsock_sock *vsk,

        spin_lock_bh(&vvs->tx_lock);

-       if (len > vvs->peer_buf_alloc) {
+       if (len > virtio_transport_tx_buf_alloc(vvs)) {
                spin_unlock_bh(&vvs->tx_lock);
                return -EMSGSIZE;
        }
@@ -882,7 +902,8 @@ static s64 virtio_transport_has_space(struct vsock_sock 
*vsk)
        struct virtio_vsock_sock *vvs = vsk->trans;
        s64 bytes;

-       bytes = (s64)vvs->peer_buf_alloc - (vvs->tx_cnt - vvs->peer_fwd_cnt);
+       bytes = (s64)virtio_transport_tx_buf_alloc(vvs) -
+               (vvs->tx_cnt - vvs->peer_fwd_cnt);
        if (bytes < 0)
                bytes = 0;

--
2.34.1



Reply via email to