On 1/29/26 3:01 AM, Chen Ridong wrote:

On 2026/1/28 12:42, Waiman Long wrote:
The current cpuset partition code is able to dynamically update
the sched domains of a running system and the corresponding
HK_TYPE_DOMAIN housekeeping cpumask to perform what is essentally the
"isolcpus=domain,..." boot command line feature at run time.

The housekeeping cpumask update requires flushing a number of different
workqueues which may not be safe with cpus_read_lock() held as the
workqueue flushing code may acquire cpus_read_lock() or acquiring locks
which have locking dependency with cpus_read_lock() down the chain. Below
is an example of such circular locking problem.

   ======================================================
   WARNING: possible circular locking dependency detected
   6.18.0-test+ #2 Tainted: G S
   ------------------------------------------------------
   test_cpuset_prs/10971 is trying to acquire lock:
   ffff888112ba4958 ((wq_completion)sync_wq){+.+.}-{0:0}, at: 
touch_wq_lockdep_map+0x7a/0x180

   but task is already holding lock:
   ffffffffae47f450 (cpuset_mutex){+.+.}-{4:4}, at: 
cpuset_partition_write+0x85/0x130

   which lock already depends on the new lock.

   the existing dependency chain (in reverse order) is:
   -> #4 (cpuset_mutex){+.+.}-{4:4}:
   -> #3 (cpu_hotplug_lock){++++}-{0:0}:
   -> #2 (rtnl_mutex){+.+.}-{4:4}:
   -> #1 ((work_completion)(&arg.work)){+.+.}-{0:0}:
   -> #0 ((wq_completion)sync_wq){+.+.}-{0:0}:

   Chain exists of:
     (wq_completion)sync_wq --> cpu_hotplug_lock --> cpuset_mutex

   5 locks held by test_cpuset_prs/10971:
    #0: ffff88816810e440 (sb_writers#7){.+.+}-{0:0}, at: ksys_write+0xf9/0x1d0
    #1: ffff8891ab620890 (&of->mutex#2){+.+.}-{4:4}, at: 
kernfs_fop_write_iter+0x260/0x5f0
    #2: ffff8890a78b83e8 (kn->active#187){.+.+}-{0:0}, at: 
kernfs_fop_write_iter+0x2b6/0x5f0
    #3: ffffffffadf32900 (cpu_hotplug_lock){++++}-{0:0}, at: 
cpuset_partition_write+0x77/0x130
    #4: ffffffffae47f450 (cpuset_mutex){+.+.}-{4:4}, at: 
cpuset_partition_write+0x85/0x130

   Call Trace:
    <TASK>
      :
    touch_wq_lockdep_map+0x93/0x180
    __flush_workqueue+0x111/0x10b0
    housekeeping_update+0x12d/0x2d0
    update_parent_effective_cpumask+0x595/0x2440
    update_prstate+0x89d/0xce0
    cpuset_partition_write+0xc5/0x130
    cgroup_file_write+0x1a5/0x680
    kernfs_fop_write_iter+0x3df/0x5f0
    vfs_write+0x525/0xfd0
    ksys_write+0xf9/0x1d0
    do_syscall_64+0x95/0x520
    entry_SYSCALL_64_after_hwframe+0x76/0x7e

To avoid such a circular locking dependency problem, we have to
call housekeeping_update() without holding the cpus_read_lock()
and cpuset_mutex. One way to do that is to introduce a new top level
isolcpus_update_mutex which will be acquired first if the set of isolated
CPUs may have to be updated. This new isolcpus_update_mutex will provide
the need mutual exclusion without the need to hold cpus_read_lock().

As cpus_read_lock() is now no longer held when
tmigr_isolated_exclude_cpumask() is called, it needs to acquire it
directly.

The lockdep_is_cpuset_held() is also updated to check the new
isolcpus_update_mutex.

I worry about the issue:

CPU1                            CPU2
rmdir
css->ss->css_killed(css);                 
cpuset_css_killed
                                __update_isolation_cpumasks
                                cpuset_full_unlock
css->flags |= CSS_DYING;
css_clear_dir(css);
...
// offline and free do not
// get isolcpus_update_mutex
cpuset_css_offline
cpuset_css_free
                                cpuset_full_lock
                                ...
                                // UAF?

That is the reason why I add a new top-level isolcpus_update_mutex. cpuset_css_killed() and the update_isolation_cpumasks()'s unlock/lock sequence will have to acquire this isolcpus_update_mutex first.

As long as all the possible paths (except CPU hotplug) that can call into update_isolation_cpumasks() has acquired isolcpus_update_mutex, it will block cpuset_css_killed() from completing. Note that I add a "lockdep_assert_held(&isolcpus_update_mutex);" in update_isolation_cpumasks().

Cheers,
Longman

Signed-off-by: Waiman Long <[email protected]>
---
  kernel/cgroup/cpuset.c        | 79 ++++++++++++++++++++++++-----------
  kernel/sched/isolation.c      |  4 +-
  kernel/time/timer_migration.c |  3 +-
  3 files changed, 57 insertions(+), 29 deletions(-)

diff --git a/kernel/cgroup/cpuset.c b/kernel/cgroup/cpuset.c
index 98c7cb732206..96390ceb5122 100644
--- a/kernel/cgroup/cpuset.c
+++ b/kernel/cgroup/cpuset.c
@@ -78,7 +78,7 @@ static cpumask_var_t  subpartitions_cpus;
  static cpumask_var_t  isolated_cpus;
/*
- * isolated_cpus updating flag (protected by cpuset_mutex)
+ * isolated_cpus updating flag (protected by isolcpus_update_mutex)
   * Set if isolated_cpus is going to be updated in the current
   * cpuset_mutex crtical section.
   */
@@ -223,29 +223,46 @@ struct cpuset top_cpuset = {
  };
/*
- * There are two global locks guarding cpuset structures - cpuset_mutex and
- * callback_lock. The cpuset code uses only cpuset_mutex. Other kernel
- * subsystems can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset
- * structures. Note that cpuset_mutex needs to be a mutex as it is used in
- * paths that rely on priority inheritance (e.g. scheduler - on RT) for
- * correctness.
+ * CPUSET Locking Convention
+ * -------------------------
   *
- * A task must hold both locks to modify cpusets.  If a task holds
- * cpuset_mutex, it blocks others, ensuring that it is the only task able to
- * also acquire callback_lock and be able to modify cpusets.  It can perform
- * various checks on the cpuset structure first, knowing nothing will change.
- * It can also allocate memory while just holding cpuset_mutex.  While it is
- * performing these checks, various callback routines can briefly acquire
- * callback_lock to query cpusets.  Once it is ready to make the changes, it
- * takes callback_lock, blocking everyone else.
+ * Below are the three global locks guarding cpuset structures in lock
+ * acquisition order:
+ *  - isolcpus_update_mutex (optional)
+ *  - cpu_hotplug_lock (cpus_read_lock/cpus_write_lock)
+ *  - cpuset_mutex
+ *  - callback_lock (raw spinlock)
   *
- * Calls to the kernel memory allocator can not be made while holding
- * callback_lock, as that would risk double tripping on callback_lock
- * from one of the callbacks into the cpuset code from within
- * __alloc_pages().
+ * The first isolcpus_update_mutex should only be held if the existing set of
+ * isolated CPUs (in isolated partition) or any of the partition states may be
+ * changed when some cpuset control files are being written into. Otherwise,
+ * it can be skipped. Holding isolcpus_update_mutex/cpus_read_lock or
+ * cpus_write_lock will ensure mutual exclusion of isolated_cpus update.
   *
- * If a task is only holding callback_lock, then it has read-only
- * access to cpusets.
+ * As cpuset will now indirectly flush a number of different workqueues in
+ * housekeeping_update() when the set of isolated CPUs is going to be changed,
+ * it may not be safe from the circular locking perspective to hold the
+ * cpus_read_lock. So cpuset_full_lock() will be released before calling
+ * housekeeping_update() and re-acquired afterward.
+ *
+ * A task must hold all the remaining three locks to modify externally visible
+ * or used fields of cpusets, though some of the internally used cpuset fields
+ * can be modified by holding cpu_hotplug_lock and cpuset_mutex only. If only
+ * reliable read access of the externally used fields are needed, a task can
+ * hold either cpuset_mutex or callback_lock.
+ *
+ * If a task holds cpu_hotplug_lock and cpuset_mutex, it blocks others,
+ * ensuring that it is the only task able to also acquire callback_lock and
+ * be able to modify cpusets.  It can perform various checks on the cpuset
+ * structure first, knowing nothing will change. It can also allocate memory
+ * without holding callback_lock. While it is performing these checks, various
+ * callback routines can briefly acquire callback_lock to query cpusets.  Once
+ * it is ready to make the changes, it takes callback_lock, blocking everyone
+ * else.
+ *
+ * Calls to the kernel memory allocator cannot be made while holding
+ * callback_lock which is a spinlock, as the memory allocator may sleep or
+ * call back into cpuset code and acquire callback_lock.
   *
   * Now, the task_struct fields mems_allowed and mempolicy may be changed
   * by other task, we use alloc_lock in the task_struct fields to protect
@@ -256,6 +273,7 @@ struct cpuset top_cpuset = {
   * cpumasks and nodemasks.
   */
+static DEFINE_MUTEX(isolcpus_update_mutex);
  static DEFINE_MUTEX(cpuset_mutex);
/**
@@ -302,7 +320,7 @@ void cpuset_full_unlock(void)
  #ifdef CONFIG_LOCKDEP
  bool lockdep_is_cpuset_held(void)
  {
-       return lockdep_is_held(&cpuset_mutex);
+       return lockdep_is_held(&isolcpus_update_mutex);
  }
  #endif
@@ -1294,9 +1312,8 @@ static bool prstate_housekeeping_conflict(int prstate, struct cpumask *new_cpus)
  static void __update_isolation_cpumasks(bool twork);
  static void isolation_task_work_fn(struct callback_head *cb)
  {
-       cpuset_full_lock();
+       guard(mutex)(&isolcpus_update_mutex);
        __update_isolation_cpumasks(true);
-       cpuset_full_lock();
  }
/*
@@ -1338,8 +1355,18 @@ static void __update_isolation_cpumasks(bool twork)
                return;
        }
+ lockdep_assert_held(&isolcpus_update_mutex);
+       /*
+        * Release cpus_read_lock & cpuset_mutex before calling
+        * housekeeping_update() and re-acquiring them afterward if not
+        * calling from task_work.
+        */
+       if (!twork)
+               cpuset_full_unlock();
        ret = housekeeping_update(isolated_cpus);
        WARN_ON_ONCE(ret < 0);
+       if (!twork)
+               cpuset_full_lock();
isolated_cpus_updating = false;
  }
@@ -3196,6 +3223,7 @@ ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
                return -EACCES;
buf = strstrip(buf);
+       mutex_lock(&isolcpus_update_mutex);
        cpuset_full_lock();
        if (!is_cpuset_online(cs))
                goto out_unlock;
@@ -3226,6 +3254,7 @@ ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
                rebuild_sched_domains_locked();
  out_unlock:
        cpuset_full_unlock();
+       mutex_unlock(&isolcpus_update_mutex);
        if (of_cft(of)->private == FILE_MEMLIST)
                schedule_flush_migrate_mm();
        return retval ?: nbytes;
@@ -3329,6 +3358,7 @@ static ssize_t cpuset_partition_write(struct 
kernfs_open_file *of, char *buf,
        else
                return -EINVAL;
+ guard(mutex)(&isolcpus_update_mutex);
        cpuset_full_lock();
        if (is_cpuset_online(cs))
                retval = update_prstate(cs, val);
@@ -3502,6 +3532,7 @@ static void cpuset_css_killed(struct cgroup_subsys_state 
*css)
  {
        struct cpuset *cs = css_cs(css);
+ guard(mutex)(&isolcpus_update_mutex);
        cpuset_full_lock();
        /* Reset valid partition back to member */
        if (is_partition_valid(cs))
diff --git a/kernel/sched/isolation.c b/kernel/sched/isolation.c
index 3b725d39c06e..ef152d401fe2 100644
--- a/kernel/sched/isolation.c
+++ b/kernel/sched/isolation.c
@@ -123,8 +123,6 @@ int housekeeping_update(struct cpumask *isol_mask)
        struct cpumask *trial, *old = NULL;
        int err;
- lockdep_assert_cpus_held();
-
        trial = kmalloc(cpumask_size(), GFP_KERNEL);
        if (!trial)
                return -ENOMEM;
@@ -136,7 +134,7 @@ int housekeeping_update(struct cpumask *isol_mask)
        }
if (!housekeeping.flags)
-               static_branch_enable_cpuslocked(&housekeeping_overridden);
+               static_branch_enable(&housekeeping_overridden);
if (housekeeping.flags & HK_FLAG_DOMAIN)
                old = housekeeping_cpumask_dereference(HK_TYPE_DOMAIN);
diff --git a/kernel/time/timer_migration.c b/kernel/time/timer_migration.c
index 6da9cd562b20..244a8d025e78 100644
--- a/kernel/time/timer_migration.c
+++ b/kernel/time/timer_migration.c
@@ -1559,8 +1559,6 @@ int tmigr_isolated_exclude_cpumask(struct cpumask 
*exclude_cpumask)
        cpumask_var_t cpumask __free(free_cpumask_var) = CPUMASK_VAR_NULL;
        int cpu;
- lockdep_assert_cpus_held();
-
        if (!works)
                return -ENOMEM;
        if (!alloc_cpumask_var(&cpumask, GFP_KERNEL))
@@ -1570,6 +1568,7 @@ int tmigr_isolated_exclude_cpumask(struct cpumask 
*exclude_cpumask)
         * First set previously isolated CPUs as available (unisolate).
         * This cpumask contains only CPUs that switched to available now.
         */
+       guard(cpus_read_lock)();
        cpumask_andnot(cpumask, cpu_online_mask, exclude_cpumask);
        cpumask_andnot(cpumask, cpumask, tmigr_available_cpumask);


Reply via email to