On 2026/1/30 23:42, Waiman Long wrote:
> The current cpuset partition code is able to dynamically update
> the sched domains of a running system and the corresponding
> HK_TYPE_DOMAIN housekeeping cpumask to perform what is essentally the
> "isolcpus=domain,..." boot command line feature at run time.
> 
> The housekeeping cpumask update requires flushing a number of different
> workqueues which may not be safe with cpus_read_lock() held as the
> workqueue flushing code may acquire cpus_read_lock() or acquiring locks
> which have locking dependency with cpus_read_lock() down the chain. Below
> is an example of such circular locking problem.
> 
>   ======================================================
>   WARNING: possible circular locking dependency detected
>   6.18.0-test+ #2 Tainted: G S
>   ------------------------------------------------------
>   test_cpuset_prs/10971 is trying to acquire lock:
>   ffff888112ba4958 ((wq_completion)sync_wq){+.+.}-{0:0}, at: 
> touch_wq_lockdep_map+0x7a/0x180
> 
>   but task is already holding lock:
>   ffffffffae47f450 (cpuset_mutex){+.+.}-{4:4}, at: 
> cpuset_partition_write+0x85/0x130
> 
>   which lock already depends on the new lock.
> 
>   the existing dependency chain (in reverse order) is:
>   -> #4 (cpuset_mutex){+.+.}-{4:4}:
>   -> #3 (cpu_hotplug_lock){++++}-{0:0}:
>   -> #2 (rtnl_mutex){+.+.}-{4:4}:
>   -> #1 ((work_completion)(&arg.work)){+.+.}-{0:0}:
>   -> #0 ((wq_completion)sync_wq){+.+.}-{0:0}:
> 
>   Chain exists of:
>     (wq_completion)sync_wq --> cpu_hotplug_lock --> cpuset_mutex
> 
>   5 locks held by test_cpuset_prs/10971:
>    #0: ffff88816810e440 (sb_writers#7){.+.+}-{0:0}, at: ksys_write+0xf9/0x1d0
>    #1: ffff8891ab620890 (&of->mutex#2){+.+.}-{4:4}, at: 
> kernfs_fop_write_iter+0x260/0x5f0
>    #2: ffff8890a78b83e8 (kn->active#187){.+.+}-{0:0}, at: 
> kernfs_fop_write_iter+0x2b6/0x5f0
>    #3: ffffffffadf32900 (cpu_hotplug_lock){++++}-{0:0}, at: 
> cpuset_partition_write+0x77/0x130
>    #4: ffffffffae47f450 (cpuset_mutex){+.+.}-{4:4}, at: 
> cpuset_partition_write+0x85/0x130
> 
>   Call Trace:
>    <TASK>
>      :
>    touch_wq_lockdep_map+0x93/0x180
>    __flush_workqueue+0x111/0x10b0
>    housekeeping_update+0x12d/0x2d0
>    update_parent_effective_cpumask+0x595/0x2440
>    update_prstate+0x89d/0xce0
>    cpuset_partition_write+0xc5/0x130
>    cgroup_file_write+0x1a5/0x680
>    kernfs_fop_write_iter+0x3df/0x5f0
>    vfs_write+0x525/0xfd0
>    ksys_write+0xf9/0x1d0
>    do_syscall_64+0x95/0x520
>    entry_SYSCALL_64_after_hwframe+0x76/0x7e
> 
> To avoid such a circular locking dependency problem, we have to
> call housekeeping_update() without holding the cpus_read_lock() and
> cpuset_mutex. The current set of wq's flushed by housekeeping_update()
> may not have work functions that call cpus_read_lock() directly,
> but we are likely to extend the list of wq's that are flushed in the
> future. Moreover, the current set of work functions may hold locks that
> may have cpu_hotplug_lock down the dependency chain.
> 
> One way to do that is to introduce a new top level cpuset_top_mutex
> which will be acquired first.  This new cpuset_top_mutex will provide
> the need mutual exclusion without the need to hold cpus_read_lock().
> 

Introducing a new global lock warrants careful consideration. I wonder if we
could make all updates to isolated_cpus asynchronous. If that is feasible, we
could avoid adding a global lock altogether. If not, we need to clarify which
updates must remain synchronous and which ones can be handled asynchronously.

> As cpus_read_lock() is now no longer held when
> tmigr_isolated_exclude_cpumask() is called, it needs to acquire it
> directly.
> 
> The lockdep_is_cpuset_held() is also updated to check the new
> cpuset_top_mutex.
> 
> Signed-off-by: Waiman Long <[email protected]>
> ---
>  kernel/cgroup/cpuset.c        | 101 +++++++++++++++++++++++-----------
>  kernel/sched/isolation.c      |   4 +-
>  kernel/time/timer_migration.c |   3 +-
>  3 files changed, 70 insertions(+), 38 deletions(-)
> 
> diff --git a/kernel/cgroup/cpuset.c b/kernel/cgroup/cpuset.c
> index 0b0eb1df09d5..edccfa2df9da 100644
> --- a/kernel/cgroup/cpuset.c
> +++ b/kernel/cgroup/cpuset.c
> @@ -78,13 +78,13 @@ static cpumask_var_t      subpartitions_cpus;
>  static cpumask_var_t isolated_cpus;
>  
>  /*
> - * isolated_cpus updating flag (protected by cpuset_mutex)
> + * isolated_cpus updating flag (protected by cpuset_top_mutex)
>   * Set if isolated_cpus is going to be updated in the current
>   * cpuset_mutex crtical section.
>   */
>  static bool isolated_cpus_updating;
>  
> -/* Both cpuset_mutex and cpus_read_locked acquired */
> +/* cpuset_top_mutex acquired */
>  static bool cpuset_locked;
>  
>  /*
> @@ -222,29 +222,44 @@ struct cpuset top_cpuset = {
>  };
>  
>  /*
> - * There are two global locks guarding cpuset structures - cpuset_mutex and
> - * callback_lock. The cpuset code uses only cpuset_mutex. Other kernel
> - * subsystems can use cpuset_lock()/cpuset_unlock() to prevent change to 
> cpuset
> - * structures. Note that cpuset_mutex needs to be a mutex as it is used in
> - * paths that rely on priority inheritance (e.g. scheduler - on RT) for
> - * correctness.
> + * CPUSET Locking Convention
> + * -------------------------
>   *
> - * A task must hold both locks to modify cpusets.  If a task holds
> - * cpuset_mutex, it blocks others, ensuring that it is the only task able to
> - * also acquire callback_lock and be able to modify cpusets.  It can perform
> - * various checks on the cpuset structure first, knowing nothing will change.
> - * It can also allocate memory while just holding cpuset_mutex.  While it is
> - * performing these checks, various callback routines can briefly acquire
> - * callback_lock to query cpusets.  Once it is ready to make the changes, it
> - * takes callback_lock, blocking everyone else.
> + * Below are the four global locks guarding cpuset structures in lock
> + * acquisition order:
> + *  - cpuset_top_mutex
> + *  - cpu_hotplug_lock (cpus_read_lock/cpus_write_lock)
> + *  - cpuset_mutex
> + *  - callback_lock (raw spinlock)
>   *
> - * Calls to the kernel memory allocator can not be made while holding
> - * callback_lock, as that would risk double tripping on callback_lock
> - * from one of the callbacks into the cpuset code from within
> - * __alloc_pages().
> + * The first cpuset_top_mutex will be held except when calling into
> + * cpuset_handle_hotplug() from the CPU hotplug code where cpus_write_lock
> + * and cpuset_mutex will be held instead.
>   *
> - * If a task is only holding callback_lock, then it has read-only
> - * access to cpusets.
> + * As cpuset will now indirectly flush a number of different workqueues in
> + * housekeeping_update() when the set of isolated CPUs is going to be 
> changed,
> + * it may not be safe from the circular locking perspective to hold the
> + * cpus_read_lock. So cpus_read_lock and cpuset_mutex will be released before
> + * calling housekeeping_update() and re-acquired afterward.
> + *
> + * A task must hold all the remaining three locks to modify externally 
> visible
> + * or used fields of cpusets, though some of the internally used cpuset 
> fields
> + * can be modified without holding callback_lock. If only reliable read 
> access
> + * of the externally used fields are needed, a task can hold either
> + * cpuset_mutex or callback_lock which are exposed to other subsystems.
> + *
> + * If a task holds cpu_hotplug_lock and cpuset_mutex, it blocks others,
> + * ensuring that it is the only task able to also acquire callback_lock and
> + * be able to modify cpusets.  It can perform various checks on the cpuset
> + * structure first, knowing nothing will change. It can also allocate memory
> + * without holding callback_lock. While it is performing these checks, 
> various
> + * callback routines can briefly acquire callback_lock to query cpusets.  
> Once
> + * it is ready to make the changes, it takes callback_lock, blocking everyone
> + * else.
> + *
> + * Calls to the kernel memory allocator cannot be made while holding
> + * callback_lock which is a spinlock, as the memory allocator may sleep or
> + * call back into cpuset code and acquire callback_lock.
>   *
>   * Now, the task_struct fields mems_allowed and mempolicy may be changed
>   * by other task, we use alloc_lock in the task_struct fields to protect
> @@ -255,6 +270,7 @@ struct cpuset top_cpuset = {
>   * cpumasks and nodemasks.
>   */
>  
> +static DEFINE_MUTEX(cpuset_top_mutex);
>  static DEFINE_MUTEX(cpuset_mutex);
>  
>  /**
> @@ -278,6 +294,18 @@ void lockdep_assert_cpuset_lock_held(void)
>       lockdep_assert_held(&cpuset_mutex);
>  }
>  
> +static void cpuset_partial_lock(void)
> +{
> +     cpus_read_lock();
> +     mutex_lock(&cpuset_mutex);
> +}
> +
> +static void cpuset_partial_unlock(void)
> +{
> +     mutex_unlock(&cpuset_mutex);
> +     cpus_read_unlock();
> +}
> +
>  /**
>   * cpuset_full_lock - Acquire full protection for cpuset modification
>   *
> @@ -286,22 +314,22 @@ void lockdep_assert_cpuset_lock_held(void)
>   */
>  void cpuset_full_lock(void)
>  {
> -     cpus_read_lock();
> -     mutex_lock(&cpuset_mutex);
> +     mutex_lock(&cpuset_top_mutex);
> +     cpuset_partial_lock();
>       cpuset_locked = true;
>  }
>  
>  void cpuset_full_unlock(void)
>  {
>       cpuset_locked = false;
> -     mutex_unlock(&cpuset_mutex);
> -     cpus_read_unlock();
> +     cpuset_partial_unlock();
> +     mutex_unlock(&cpuset_top_mutex);
>  }
>  
>  #ifdef CONFIG_LOCKDEP
>  bool lockdep_is_cpuset_held(void)
>  {
> -     return lockdep_is_held(&cpuset_mutex);
> +     return lockdep_is_held(&cpuset_top_mutex);
>  }
>  #endif
>  
> @@ -1292,12 +1320,12 @@ static bool prstate_housekeeping_conflict(int 
> prstate, struct cpumask *new_cpus)
>  
>  static void isolcpus_workfn(struct work_struct *work)
>  {
> -     cpuset_full_lock();
> -     if (isolated_cpus_updating) {
> -             WARN_ON_ONCE(housekeeping_update(isolated_cpus) < 0);
> -             isolated_cpus_updating = false;
> -     }
> -     cpuset_full_unlock();
> +     guard(mutex)(&cpuset_top_mutex);
> +     if (!isolated_cpus_updating)
> +             return;
> +
> +     WARN_ON_ONCE(housekeeping_update(isolated_cpus) < 0);
> +     isolated_cpus_updating = false;
>  }
>  
>  /*
> @@ -1331,8 +1359,15 @@ static void update_isolation_cpumasks(void)
>               return;
>       }
>  
> +     lockdep_assert_held(&cpuset_top_mutex);
> +     /*
> +      * Release cpus_read_lock & cpuset_mutex before calling
> +      * housekeeping_update() and re-acquiring them afterward.
> +      */
> +     cpuset_partial_unlock();
>       WARN_ON_ONCE(housekeeping_update(isolated_cpus) < 0);
>       isolated_cpus_updating = false;
> +     cpuset_partial_lock();
>  }
>  
>  /**
> diff --git a/kernel/sched/isolation.c b/kernel/sched/isolation.c
> index 3b725d39c06e..ef152d401fe2 100644
> --- a/kernel/sched/isolation.c
> +++ b/kernel/sched/isolation.c
> @@ -123,8 +123,6 @@ int housekeeping_update(struct cpumask *isol_mask)
>       struct cpumask *trial, *old = NULL;
>       int err;
>  
> -     lockdep_assert_cpus_held();
> -
>       trial = kmalloc(cpumask_size(), GFP_KERNEL);
>       if (!trial)
>               return -ENOMEM;
> @@ -136,7 +134,7 @@ int housekeeping_update(struct cpumask *isol_mask)
>       }
>  
>       if (!housekeeping.flags)
> -             static_branch_enable_cpuslocked(&housekeeping_overridden);
> +             static_branch_enable(&housekeeping_overridden);
>  
>       if (housekeeping.flags & HK_FLAG_DOMAIN)
>               old = housekeeping_cpumask_dereference(HK_TYPE_DOMAIN);
> diff --git a/kernel/time/timer_migration.c b/kernel/time/timer_migration.c
> index 6da9cd562b20..244a8d025e78 100644
> --- a/kernel/time/timer_migration.c
> +++ b/kernel/time/timer_migration.c
> @@ -1559,8 +1559,6 @@ int tmigr_isolated_exclude_cpumask(struct cpumask 
> *exclude_cpumask)
>       cpumask_var_t cpumask __free(free_cpumask_var) = CPUMASK_VAR_NULL;
>       int cpu;
>  
> -     lockdep_assert_cpus_held();
> -
>       if (!works)
>               return -ENOMEM;
>       if (!alloc_cpumask_var(&cpumask, GFP_KERNEL))
> @@ -1570,6 +1568,7 @@ int tmigr_isolated_exclude_cpumask(struct cpumask 
> *exclude_cpumask)
>        * First set previously isolated CPUs as available (unisolate).
>        * This cpumask contains only CPUs that switched to available now.
>        */
> +     guard(cpus_read_lock)();
>       cpumask_andnot(cpumask, cpu_online_mask, exclude_cpumask);
>       cpumask_andnot(cpumask, cpumask, tmigr_available_cpumask);
>  

-- 
Best regards,
Ridong


Reply via email to