The current implementation of get_online_cpus() is global of nature
and thus not suited for any kind of common usage.

Re-implement the current recursive r/w cpu hotplug lock such that the
read side locks are as light as possible.

The current cpu hotplug lock is entirely reader biased; but since
readers are expensive there aren't a lot of them about and writer
starvation isn't a particular problem.

However by making the reader side more usable there is a fair chance
it will get used more and thus the starvation issue becomes a real
possibility.

Therefore this new implementation is fair, alternating readers and
writers; this however requires per-task state to allow the reader
recursion.

Many comments are contributed by Paul McKenney, and many previous
attempts were shown to be inadequate by both Paul and Oleg; many
thanks to them for persisting to poke holes in my attempts.

Cc: Thomas Gleixner <t...@linutronix.de>
Cc: Steven Rostedt <rost...@goodmis.org>
Reviewed-by: Oleg Nesterov <o...@redhat.com>
Reviewed-by: Paul McKenney <paul...@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <pet...@infradead.org>
---
 include/linux/cpu.h   |   67 ++++++++++++++
 include/linux/sched.h |    3 
 kernel/cpu.c          |  229 ++++++++++++++++++++++++++++++++++++--------------
 kernel/sched/core.c   |    2 
 4 files changed, 238 insertions(+), 63 deletions(-)

--- a/include/linux/cpu.h
+++ b/include/linux/cpu.h
@@ -16,6 +16,8 @@
 #include <linux/node.h>
 #include <linux/compiler.h>
 #include <linux/cpumask.h>
+#include <linux/percpu.h>
+#include <linux/sched.h>
 
 struct device;
 
@@ -173,10 +175,69 @@ extern struct bus_type cpu_subsys;
 #ifdef CONFIG_HOTPLUG_CPU
 /* Stop CPUs going up and down. */
 
+extern void cpu_hotplug_init_task(struct task_struct *p);
+
 extern void cpu_hotplug_begin(void);
 extern void cpu_hotplug_done(void);
-extern void get_online_cpus(void);
-extern void put_online_cpus(void);
+
+extern int __cpuhp_state;
+DECLARE_PER_CPU(unsigned int, __cpuhp_refcount);
+
+extern void __get_online_cpus(void);
+
+static inline void get_online_cpus(void)
+{
+       might_sleep();
+
+       /* Support reader recursion */
+       /* The value was >= 1 and remains so, reordering causes no harm. */
+       if (current->cpuhp_ref++)
+               return;
+
+       preempt_disable();
+       /*
+        * We are in an RCU-sched read-side critical section, so the writer
+        * cannot both change __cpuhp_state from readers_fast and start
+        * checking counters while we are here. So if we see !__cpuhp_state,
+        * we know that the writer won't be checking until we past the
+        * preempt_enable() and that once the synchronize_sched() is done, the
+        * writer will see anything we did within this RCU-sched read-side
+        * critical section.
+        */
+       if (likely(!__cpuhp_state))
+               __this_cpu_inc(__cpuhp_refcount);
+       else
+               __get_online_cpus(); /* Unconditional memory barrier. */
+       preempt_enable();
+       /*
+        * The barrier() from preempt_enable() prevents the compiler from
+        * bleeding the critical section out.
+        */
+}
+
+extern void __put_online_cpus(void);
+
+static inline void put_online_cpus(void)
+{
+       /* The value was >= 1 and remains so, reordering causes no harm. */
+       if (--current->cpuhp_ref)
+               return;
+
+       /*
+        * The barrier() in preempt_disable() prevents the compiler from
+        * bleeding the critical section out.
+        */
+       preempt_disable();
+       /*
+        * Same as in get_online_cpus().
+        */
+       if (likely(!__cpuhp_state))
+               __this_cpu_dec(__cpuhp_refcount);
+       else
+               __put_online_cpus(); /* Unconditional memory barrier. */
+       preempt_enable();
+}
+
 extern void cpu_hotplug_disable(void);
 extern void cpu_hotplug_enable(void);
 #define hotcpu_notifier(fn, pri)       cpu_notifier(fn, pri)
@@ -200,6 +261,8 @@ static inline void cpu_hotplug_driver_un
 
 #else          /* CONFIG_HOTPLUG_CPU */
 
+static inline void cpu_hotplug_init_task(struct task_struct *p) {}
+
 static inline void cpu_hotplug_begin(void) {}
 static inline void cpu_hotplug_done(void) {}
 #define get_online_cpus()      do { } while (0)
--- a/include/linux/sched.h
+++ b/include/linux/sched.h
@@ -1039,6 +1039,9 @@ struct task_struct {
 #ifdef CONFIG_SMP
        struct llist_node wake_entry;
        int on_cpu;
+#ifdef CONFIG_HOTPLUG_CPU
+       int cpuhp_ref;
+#endif
        struct task_struct *last_wakee;
        unsigned long wakee_flips;
        unsigned long wakee_flip_decay_ts;
--- a/kernel/cpu.c
+++ b/kernel/cpu.c
@@ -49,88 +49,195 @@ static int cpu_hotplug_disabled;
 
 #ifdef CONFIG_HOTPLUG_CPU
 
-static struct {
-       struct task_struct *active_writer;
-       struct mutex lock; /* Synchronizes accesses to refcount, */
-       /*
-        * Also blocks the new readers during
-        * an ongoing cpu hotplug operation.
-        */
-       int refcount;
-} cpu_hotplug = {
-       .active_writer = NULL,
-       .lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
-       .refcount = 0,
-};
+enum { readers_fast = 0, readers_slow, readers_block };
 
-void get_online_cpus(void)
+int __cpuhp_state;
+EXPORT_SYMBOL_GPL(__cpuhp_state);
+
+DEFINE_PER_CPU(unsigned int, __cpuhp_refcount);
+EXPORT_PER_CPU_SYMBOL_GPL(__cpuhp_refcount);
+
+static atomic_t cpuhp_waitcount;
+static DECLARE_WAIT_QUEUE_HEAD(cpuhp_readers);
+static DECLARE_WAIT_QUEUE_HEAD(cpuhp_writer);
+
+void cpu_hotplug_init_task(struct task_struct *p)
+{
+       p->cpuhp_ref = 0;
+}
+
+void __get_online_cpus(void)
 {
-       might_sleep();
-       if (cpu_hotplug.active_writer == current)
+again:
+       __this_cpu_inc(__cpuhp_refcount);
+
+       /*
+        * Due to having preemption disabled the decrement happens on
+        * the same CPU as the increment, avoiding the
+        * increment-on-one-CPU-and-decrement-on-another problem.
+        *
+        * And yes, if the reader misses the writer's assignment of
+        * readers_block to __cpuhp_state, then the writer is
+        * guaranteed to see the reader's increment.  Conversely, any
+        * readers that increment their __cpuhp_refcount after the
+        * writer looks are guaranteed to see the readers_block value,
+        * which in turn means that they are guaranteed to immediately
+        * decrement their __cpuhp_refcount, so that it doesn't matter
+        * that the writer missed them.
+        */
+
+       smp_mb(); /* A matches D */
+
+       if (likely(__cpuhp_state != readers_block))
                return;
-       mutex_lock(&cpu_hotplug.lock);
-       cpu_hotplug.refcount++;
-       mutex_unlock(&cpu_hotplug.lock);
 
+       /*
+        * Make sure an outgoing writer sees the waitcount to ensure we
+        * make progress.
+        */
+       atomic_inc(&cpuhp_waitcount);
+
+       /*
+        * Per the above comment; we still have preemption disabled and
+        * will thus decrement on the same CPU as we incremented.
+        */
+       __put_online_cpus();
+
+       /*
+        * We either call schedule() in the wait, or we'll fall through
+        * and reschedule on the preempt_enable() in get_online_cpus().
+        */
+       preempt_enable_no_resched();
+       __wait_event(cpuhp_readers, __cpuhp_state != readers_block);
+       preempt_disable();
+
+       /*
+        * Given we've still got preempt_disabled and new cpu_hotplug_begin()
+        * must do a synchronize_sched() we're guaranteed a successfull
+        * acquisition this time -- even if we wake the current
+        * cpu_hotplug_end() now.
+        */
+       if (atomic_dec_and_test(&cpuhp_waitcount))
+               wake_up(&cpuhp_writer);
+
+       goto again;
 }
-EXPORT_SYMBOL_GPL(get_online_cpus);
+EXPORT_SYMBOL_GPL(__get_online_cpus);
 
-void put_online_cpus(void)
+void __put_online_cpus(void)
 {
-       if (cpu_hotplug.active_writer == current)
-               return;
-       mutex_lock(&cpu_hotplug.lock);
+       smp_mb(); /* B matches C */
+       /*
+        * In other words, if they see our decrement (presumably to aggregate
+        * zero, as that is the only time it matters) they will also see our
+        * critical section.
+        */
+       this_cpu_dec(__cpuhp_refcount);
 
-       if (WARN_ON(!cpu_hotplug.refcount))
-               cpu_hotplug.refcount++; /* try to fix things up */
+       /* Prod writer to recheck readers_active */
+       wake_up(&cpuhp_writer);
+}
+EXPORT_SYMBOL_GPL(__put_online_cpus);
 
-       if (!--cpu_hotplug.refcount && unlikely(cpu_hotplug.active_writer))
-               wake_up_process(cpu_hotplug.active_writer);
-       mutex_unlock(&cpu_hotplug.lock);
+#define per_cpu_sum(var)                                               \
+({                                                                     \
+       typeof(var) __sum = 0;                                          \
+       int cpu;                                                        \
+       for_each_possible_cpu(cpu)                                      \
+               __sum += per_cpu(var, cpu);                             \
+       __sum;                                                          \
+})
 
+/*
+ * Return true if the modular sum of the __cpuhp_refcount per-CPU variables is
+ * zero.  If this sum is zero, then it is stable due to the fact that if any
+ * newly arriving readers increment a given counter, they will immediately
+ * decrement that same counter.
+ */
+static bool cpuhp_readers_active_check(void)
+{
+       if (per_cpu_sum(__cpuhp_refcount) != 0)
+               return false;
+
+       /*
+        * If we observed the decrement; ensure we see the entire critical
+        * section.
+        */
+
+       smp_mb(); /* C matches B */
+
+       return true;
 }
-EXPORT_SYMBOL_GPL(put_online_cpus);
 
 /*
- * This ensures that the hotplug operation can begin only when the
- * refcount goes to zero.
- *
- * Note that during a cpu-hotplug operation, the new readers, if any,
- * will be blocked by the cpu_hotplug.lock
- *
- * Since cpu_hotplug_begin() is always called after invoking
- * cpu_maps_update_begin(), we can be sure that only one writer is active.
- *
- * Note that theoretically, there is a possibility of a livelock:
- * - Refcount goes to zero, last reader wakes up the sleeping
- *   writer.
- * - Last reader unlocks the cpu_hotplug.lock.
- * - A new reader arrives at this moment, bumps up the refcount.
- * - The writer acquires the cpu_hotplug.lock finds the refcount
- *   non zero and goes to sleep again.
- *
- * However, this is very difficult to achieve in practice since
- * get_online_cpus() not an api which is called all that often.
- *
+ * This will notify new readers to block and wait for all active readers to
+ * complete.
  */
 void cpu_hotplug_begin(void)
 {
-       cpu_hotplug.active_writer = current;
+       /*
+        * Since cpu_hotplug_begin() is always called after invoking
+        * cpu_maps_update_begin(), we can be sure that only one writer is
+        * active.
+        */
+       lockdep_assert_held(&cpu_add_remove_lock);
+
+       /* Allow reader-in-writer recursion. */
+       current->cpuhp_ref++;
+
+       /* Notify readers to take the slow path. */
+       __cpuhp_state = readers_slow;
+
+       /* See percpu_down_write(); guarantees all readers take the slow path */
+       synchronize_sched();
+
+       /*
+        * Notify new readers to block; up until now, and thus throughout the
+        * longish synchronize_sched() above, new readers could still come in.
+        */
+       __cpuhp_state = readers_block;
 
-       for (;;) {
-               mutex_lock(&cpu_hotplug.lock);
-               if (likely(!cpu_hotplug.refcount))
-                       break;
-               __set_current_state(TASK_UNINTERRUPTIBLE);
-               mutex_unlock(&cpu_hotplug.lock);
-               schedule();
-       }
+       smp_mb(); /* D matches A */
+
+       /*
+        * If they don't see our writer of readers_block to __cpuhp_state,
+        * then we are guaranteed to see their __cpuhp_refcount increment, and
+        * therefore will wait for them.
+        */
+
+       /* Wait for all now active readers to complete. */
+       wait_event(cpuhp_writer, cpuhp_readers_active_check());
 }
 
 void cpu_hotplug_done(void)
 {
-       cpu_hotplug.active_writer = NULL;
-       mutex_unlock(&cpu_hotplug.lock);
+       /*
+        * Signal the writer is done, no fast path yet.
+        *
+        * One reason that we cannot just immediately flip to readers_fast is
+        * that new readers might fail to see the results of this writer's
+        * critical section.
+        */
+       __cpuhp_state = readers_slow;
+       wake_up_all(&cpuhp_readers);
+
+       /*
+        * The wait_event()/wake_up_all() prevents the race where the readers
+        * are delayed between fetching __cpuhp_state and blocking.
+        */
+
+       /* See percpu_up_write(); readers will no longer attempt to block. */
+       synchronize_sched();
+
+       /* Let 'em rip */
+       __cpuhp_state = readers_fast;
+       current->cpuhp_ref--;
+
+       /*
+        * Wait for any pending readers to be running. This ensures readers
+        * after writer and avoids writers starving readers.
+        */
+       wait_event(cpuhp_writer, !atomic_read(&cpuhp_waitcount));
 }
 
 /*
--- a/kernel/sched/core.c
+++ b/kernel/sched/core.c
@@ -1635,6 +1635,8 @@ static void __sched_fork(struct task_str
        p->numa_scan_period = sysctl_numa_balancing_scan_delay;
        p->numa_work.next = &p->numa_work;
 #endif /* CONFIG_NUMA_BALANCING */
+
+       cpu_hotplug_init_task(p);
 }
 
 #ifdef CONFIG_NUMA_BALANCING


--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majord...@vger.kernel.org
More majordomo info at  http://vger.kernel.org/majordomo-info.html
Please read the FAQ at  http://www.tux.org/lkml/

Reply via email to