Unified hierarchy will be the new version of cgroup interface.  This
patch adds Documentation/cgroups/unified-hierarchy.txt which describes
the design and rationales of unified hierarchy.

v2: Grammatical updates as per Randy Dunlap's review.

Signed-off-by: Tejun Heo <t...@kernel.org>
Cc: Randy Dunlap <rdun...@infradead.org>
 Documentation/cgroups/unified-hierarchy.txt |  359 ++++++++++++++++++++++++++++
 1 file changed, 359 insertions(+)

--- /dev/null
+++ b/Documentation/cgroups/unified-hierarchy.txt
@@ -0,0 +1,359 @@
+Cgroup unified hierarchy
+April, 2014            Tejun Heo <t...@kernel.org>
+This document describes the changes made by unified hierarchy and
+their rationales.  It will eventually be merged into the main cgroup
+1. Background
+2. Basic Operation
+  2-1. Mounting
+  2-2. cgroup.subtree_control
+  2-3. cgroup.controllers
+3. Structural Constraints
+  3-1. Top-down
+  3-2. No internal tasks
+4. Other Changes
+  4-1. [Un]populated Notification
+  4-2. Other Core Changes
+  4-3. Per-Controller Changes
+    4-3-1. blkio
+    4-3-2. cpuset
+    4-3-3. memory
+5. Planned Changes
+  5-1. CAP for resource control
+1. Background
+cgroup allows an arbitrary number of hierarchies and each hierarchy
+can host any number of controllers.  While this seems to provide a
+high level of flexibility, it isn't quite useful in practice.
+For example, as there is only one instance of each controller, utility
+type controllers such as freezer which can be useful in all
+hierarchies can only be used in one.  The issue is exacerbated by the
+fact that controllers can't be moved around once hierarchies are
+populated.  Another issue is that all controllers bound to a hierarchy
+are forced to have exactly the same view of the hierarchy.  It isn't
+possible to vary the granularity depending on the specific controller.
+In practice, these issues heavily limit which controllers can be put
+on the same hierarchy and most configurations resort to putting each
+controller on its own hierarchy.  Only closely related ones, such as
+the cpu and cpuacct controllers, make sense to put on the same
+hierarchy.  This often means that userland ends up managing multiple
+similar hierarchies repeating the same steps on each hierarchy
+whenever a hierarchy management operation is necessary.
+Unfortunately, support for multiple hierarchies comes at a steep cost.
+Internal implementation in cgroup core proper is dazzlingly
+complicated but more importantly the support for multiple hierarchies
+restricts how cgroup is used in general and what controllers can do.
+There's no limit on how many hierarchies there may be, which means
+that a task's cgroup membership can't be described in finite length.
+The key may contain any varying number of entries and is unlimited in
+length, which makes it highly awkward to handle and leads to addition
+of controllers which exist only to identify membership, which in turn
+exacerbates the original problem.
+Also, as a controller can't have any expectation regarding what shape
+of hierarchies other controllers would be on, each controller has to
+assume that all other controllers are operating on completely
+orthogonal hierarchies.  This makes it impossible, or at least very
+cumbersome, for controllers to cooperate with each other.
+In most use cases, putting controllers on hierarchies which are
+completely orthogonal to each other isn't necessary.  What usually is
+called for is the ability to have differing levels of granularity
+depending on the specific controller.  In other words, hierarchy may
+be collapsed from leaf towards root when viewed from specific
+controllers.  For example, a given configuration might not care about
+how memory is distributed beyond a certain level while still wanting
+to control how CPU cycles are distributed.
+Unified hierarchy is the next version of cgroup interface.  It aims to
+address the aforementioned issues by having more structure while
+retaining enough flexibility for most use cases.  Various other
+general and controller-specific interface issues are also addressed in
+the process.
+2. Basic Operation
+2-1. Mounting
+Currently, unified hierarchy can be mounted with the following mount
+command.  Note that this is still under development and scheduled to
+change soon.
+ mount -t cgroup -o __DEVEL__sane_behavior cgroup $MOUNT_POINT
+All controllers which are not bound to other hierarchies are
+automatically bound to unified hierarchy and show up at the root of
+it.  Controllers which are enabled only in the root of unified
+hierarchy can be bound to other hierarchies at any time.  This allows
+mixing unified hierarchy with the traditional multiple hierarchies in
+a fully backward compatible way.
+2-2. cgroup.subtree_control
+All cgroups on unified hierarchy have a "cgroup.subtree_control" file
+which governs which controllers are enabled on the children of the
+cgroup.  Let's assume a hierarchy like the following.
+  root - A - B - C
+               \ D
+root's "cgroup.subtree_control" file determines which controllers are
+enabled on A.  A's on B.  B's on C and D.  This coincides with the
+fact that controllers on the immediate sub-level are used to
+distribute the resources of the parent.  In fact, it's natural to
+assume that resource control knobs of a child belong to its parent.
+Enabling a controller in a "cgroup.subtree_control" file declares that
+distribution of the respective resources of the cgroup will be
+controlled.  Note that this means that controller enable states are
+shared among siblings.
+When read, the file contains a space-separated list of currently
+enabled controllers.  A write to the file should contain a
+space-separated list of controllers with '+' or '-' prefixed (without
+the quotes).  Controllers prefixed with '+' are enabled and '-'
+disabled.  If a controller is listed multiple times, the last entry
+wins.  The specific operations are executed atomically - either all
+succeed or fail.
+2-3. cgroup.controllers
+Read-only "cgroup.controllers" file contains a space-separated list of
+controllers which can be enabled in the cgroup's
+"cgroup.subtree_control" file.
+In the root cgroup, this lists controllers which are not bound to
+other hierarchies and the content changes as controllers are bound to
+and unbound from other hierarchies.
+In non-root cgroups, the content of this file equals that of the
+parent's "cgroup.subtree_control" file as only controllers enabled
+from the parent can be used in its children.
+3. Structural Constraints
+3-1. Top-down
+As it doesn't make sense to nest control of an uncontrolled resource,
+all non-root "cgroup.subtree_control" files can only contain
+controllers which are enabled in the parent's "cgroup.subtree_control"
+file.  A controller can be enabled only if the parent has the
+controller enabled and a controller can't be disabled if one or more
+children have it enabled.
+3-2. No internal tasks
+One long-standing issue that cgroup faces is the competition between
+tasks belonging to the parent cgroup and its children cgroups.  This
+is inherently nasty as two different types of entities compete and
+there is no agreed-upon obvious way to handle it.  Different
+controllers are doing different things.
+The cpu controller considers tasks and cgroups as equivalents and maps
+nice levels to cgroup weights.  This works for some cases but falls
+flat when children should be allocated specific ratios of CPU cycles
+and the number of internal tasks fluctuates - the ratios constantly
+change as the number of competing entities fluctuates.  There also are
+other issues.  The mapping from nice level to weight isn't obvious or
+universal, and there are various other knobs which simply aren't
+available for tasks.
+The blkio controller implicitly creates a hidden leaf node for each
+cgroup to host the tasks.  The hidden leaf has its own copies of all
+the knobs with "leaf_" prefixed.  While this allows equivalent control
+over internal tasks, it's with serious drawbacks.  It always adds an
+extra layer of nesting which may not be necessary, makes the interface
+messy and significantly complicates the implementation.
+The memory controller currently doesn't have a way to control what
+happens between internal tasks and child cgroups and the behavior is
+not clearly defined.  There have been attempts to add ad-hoc behaviors
+and knobs to tailor the behavior to specific workloads.  Continuing
+this direction will lead to problems which will be extremely difficult
+to resolve in the long term.
+Multiple controllers struggle with internal tasks and came up with
+different ways to deal with it; unfortunately, all the approaches in
+use now are severely flawed and, furthermore, the widely different
+behaviors make cgroup as whole highly inconsistent.
+It is clear that this is something which needs to be addressed from
+cgroup core proper in a uniform way so that controllers don't need to
+worry about it and cgroup as a whole shows a consistent and logical
+behavior.  To achieve that, unified hierarchy enforces the following
+structural constraint:
+ Except for the root, only cgroups which don't contain any task may
+ have controllers enabled in their "cgroup.subtree_control" files.
+Combined with other properties, this guarantees that, when a
+controller is looking at the part of the hierarchy which has it
+enabled, tasks are always only on the leaves.  This rules out
+situations where child cgroups compete against internal tasks of the
+There are two things to note.  Firstly, the root cgroup is exempt from
+the restriction.  Root contains tasks and anonymous resource
+consumption which can't be associated with any other cgroup and
+requires special treatment from most controllers.  How resource
+consumption in the root cgroup is governed is up to each controller.
+Secondly, the restriction doesn't take effect if there is no enabled
+controller in the cgroup's "cgroup.subtree_control" file.  This is
+important as otherwise it wouldn't be possible to create children of a
+populated cgroup.  To control resource distribution of a cgroup, the
+cgroup must create children and transfer all its tasks to the children
+before enabling controllers in its "cgroup.subtree_control" file.
+4. Other Changes
+4-1. [Un]populated Notification
+cgroup users often need a way to determine when a cgroup's
+subhierarchy becomes empty so that it can be cleaned up.  cgroup
+currently provides release_agent for it; unfortunately, this mechanism
+is riddled with issues.
+- It delivers events by forking and execing a userland binary
+  specified as the release_agent.  This is a long deprecated method of
+  notification delivery.  It's extremely heavy, slow and cumbersome to
+  integrate with larger infrastructure.
+- There is single monitoring point at the root.  There's no way to
+  delegate management of a subtree.
+- The event isn't recursive.  It triggers when a cgroup doesn't have
+  any tasks or child cgroups.  Events for internal nodes trigger only
+  after all children are removed.  This again makes it impossible to
+  delegate management of a subtree.
+- Events are filtered from the kernel side.  A "notify_on_release"
+  file is used to subscribe to or suppress release events.  This is
+  unnecessarily complicated and probably done this way because event
+  delivery itself was expensive.
+Unified hierarchy implements an interface file "cgroup.populated"
+which can be used to monitor whether the cgroup's subhierarchy has
+tasks in it or not.  Its value is 0 if there is no task in the cgroup
+and its descendants; otherwise, 1.  poll and [id]notify events are
+triggered when the value changes.
+This is significantly lighter and simpler and trivially allows
+delegating management of subhierarchy - subhierarchy monitoring can
+block further propagation simply by putting itself or another process
+in the subhierarchy and monitor events that it's interested in from
+there without interfering with monitoring higher in the tree.
+In unified hierarchy, the release_agent mechanism is no longer
+supported and the interface files "release_agent" and
+"notify_on_release" do not exist.
+4-2. Other Core Changes
+- None of the mount options is allowed.
+- remount is disallowed.
+- rename(2) is disallowed.
+- The "tasks" file is removed.  Everything should at process
+  granularity.  Use the "cgroup.procs" file instead.
+- The "cgroup.procs" file is not sorted.  pids will be unique unless
+  they got recycled in-between reads.
+- The "cgroup.clone_children" file is removed.
+4-3. Per-Controller Changes
+4-3-1. blkio
+- blk-throttle becomes properly hierarchical.
+4-3-2. cpuset
+- Tasks are kept in empty cpusets after hotplug and take on the masks
+  of the nearest non-empty ancestor, instead of being moved to it.
+- A task can be moved into an empty cpuset, and again it takes on the
+  masks of the nearest non-empty ancestor.
+4-3-3. memory
+- use_hierarchy is on by default and the cgroup file for the flag is
+  not created.
+5. Planned Changes
+5-1. CAP for resource control
+Unified hierarchy will require one of the capabilities(7), which is
+yet to be decided, for all resource control related knobs.  Process
+organization operations - creation of sub-cgroups and migration of
+processes in sub-hierarchies may be delegated by changing the
+ownership and/or permissions on the cgroup directory and
+"cgroup.procs" interface file; however, all operations which affect
+resource control - writes to a "cgroup.subtree_control" file or any
+controller-specific knobs - will require an explicit CAP privilege.
+This, in part, is to prevent the cgroup interface from being
+inadvertently promoted to programmable API used by non-privileged
+binaries.  cgroup exposes various aspects of the system in ways which
+aren't properly abstracted for direct consumption by regular programs.
+This is an administration interface much closer to sysctl knobs than
+system calls.  Even the basic access model, being filesystem path
+based, isn't suitable for direct consumption.  There's no way to
+access "my cgroup" in a race-free way or make multiple operations
+atomic against migration to another cgroup.
+Another aspect is that, for better or for worse, the cgroup interface
+goes through far less scrutiny than regular interfaces for
+unprivileged userland.  The upside is that cgroup is able to expose
+useful features which may not be suitable for general consumption in a
+reasonable time frame.  It provides a relatively short path between
+internal details and userland-visible interface.  Of course, this
+shortcut comes with high risk.  We go through what we go through for
+general kernel APIs for good reasons.  It may end up leaking internal
+details in a way which can exert significant pain by locking the
+kernel into a contract that can't be maintained in a reasonable
+Also, due to the specific nature, cgroup and its controllers don't
+tend to attract attention from a wide scope of developers.  cgroup's
+short history is already fraught with severely mis-designed
+interfaces, unnecessary commitments to and exposing of internal
+details, broken and dangerous implementations of various features.
+Keeping cgroup as an administration interface is both advantageous for
+its role and imperative given its nature.  Some of the cgroup features
+may make sense for unprivileged access.  If deemed justified, those
+must be further abstracted and implemented as a different interface,
+be it a system call or process-private filesystem, and survive through
+the scrutiny that any interface for general consumption is required to
+go through.
+Requiring CAP is not a complete solution but should serve as a
+significant deterrent against spraying cgroup usages in non-privileged
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majord...@vger.kernel.org
More majordomo info at  http://vger.kernel.org/majordomo-info.html
Please read the FAQ at  http://www.tux.org/lkml/

Reply via email to