On Tue, Jul 21, 2015 at 04:34:52PM -0700, Andrew Morton wrote:
> On Sun, 19 Jul 2015 15:31:15 +0300 Vladimir Davydov <[email protected]> 
> wrote:
> 
> > Knowing the portion of memory that is not used by a certain application
> > or memory cgroup (idle memory) can be useful for partitioning the system
> > efficiently, e.g. by setting memory cgroup limits appropriately.
> > Currently, the only means to estimate the amount of idle memory provided
> > by the kernel is /proc/PID/{clear_refs,smaps}: the user can clear the
> > access bit for all pages mapped to a particular process by writing 1 to
> > clear_refs, wait for some time, and then count smaps:Referenced.
> > However, this method has two serious shortcomings:
> > 
> >  - it does not count unmapped file pages
> >  - it affects the reclaimer logic
> > 
> > To overcome these drawbacks, this patch introduces two new page flags,
> > Idle and Young, and a new proc file, /proc/kpageidle. A page's Idle flag
> > can only be set from userspace by setting bit in /proc/kpageidle at the
> > offset corresponding to the page, and it is cleared whenever the page is
> > accessed either through page tables (it is cleared in page_referenced()
> > in this case) or using the read(2) system call (mark_page_accessed()).
> > Thus by setting the Idle flag for pages of a particular workload, which
> > can be found e.g. by reading /proc/PID/pagemap, waiting for some time to
> > let the workload access its working set, and then reading the kpageidle
> > file, one can estimate the amount of pages that are not used by the
> > workload.
> > 
> > The Young page flag is used to avoid interference with the memory
> > reclaimer. A page's Young flag is set whenever the Access bit of a page
> > table entry pointing to the page is cleared by writing to kpageidle. If
> > page_referenced() is called on a Young page, it will add 1 to its return
> > value, therefore concealing the fact that the Access bit was cleared.
> > 
> > Note, since there is no room for extra page flags on 32 bit, this
> > feature uses extended page flags when compiled on 32 bit.
> > 
> > ...
> >
> >
> > ...
> >
> > +static void kpageidle_clear_pte_refs(struct page *page)
> > +{
> > +   struct rmap_walk_control rwc = {
> > +           .rmap_one = kpageidle_clear_pte_refs_one,
> > +           .anon_lock = page_lock_anon_vma_read,
> > +   };
> 
> I think this can be static const, since `arg' is unused?  That would
> save some cycles and stack.

Good catch, thanks.

> 
> > +   bool need_lock;
> > +
> > +   if (!page_mapped(page) ||
> > +       !page_rmapping(page))
> > +           return;
> > +
> > +   need_lock = !PageAnon(page) || PageKsm(page);
> > +   if (need_lock && !trylock_page(page))
> 
> Oh.  So the feature is a bit unreliable.
> 
> I'm not immediately seeing anything which would prevent us from using
> plain old lock_page() here.  What's going on?

A page may be locked for quite a long period of time, e.g.
truncate_inode_pages_range() may wait until a page writeback finishes
under the page lock. Instead of stalling kpageidle scan, we'd better
move on to the next page. Of course, the result won't be 100% accurate.
In fact, it isn't accurate anyway, because we skip isolated pages,
neither can it possibly be 100% accurate, because the scan itself is not
instant so that while we are performing it the system usage pattern
might change. This new API is only supposed to give a good estimate of
memory usage pattern, which could be used as a hint for adjusting the
system configuration to improve performance.

> 
> > +           return;
> > +
> > +   rmap_walk(page, &rwc);
> > +
> > +   if (need_lock)
> > +           unlock_page(page);
> > +}
> > +
> > +static ssize_t kpageidle_read(struct file *file, char __user *buf,
> > +                         size_t count, loff_t *ppos)
> > +{
> > +   u64 __user *out = (u64 __user *)buf;
> > +   struct page *page;
> > +   unsigned long pfn, end_pfn;
> > +   ssize_t ret = 0;
> > +   u64 idle_bitmap = 0;
> > +   int bit;
> > +
> > +   if (*ppos & KPMMASK || count & KPMMASK)
> > +           return -EINVAL;
> 
> Interface requires 8-byte aligned offset and size.
> 
> > +   pfn = *ppos * BITS_PER_BYTE;
> > +   if (pfn >= max_pfn)
> > +           return 0;
> > +
> > +   end_pfn = pfn + count * BITS_PER_BYTE;
> > +   if (end_pfn > max_pfn)
> > +           end_pfn = ALIGN(max_pfn, KPMBITS);
> 
> So we lose up to 63 pages.  Presumably max_pfn is well enough aligned
> for this to not matter, dunno.

ALIGN(x, a) resolves to ((x + a - 1) & ~(a - 1)), which is >= x, so we
shouldn't loose anything.

> 
> > +   for (; pfn < end_pfn; pfn++) {
> > +           bit = pfn % KPMBITS;
> > +           page = kpageidle_get_page(pfn);
> > +           if (page) {
> > +                   if (page_is_idle(page)) {
> > +                           /*
> > +                            * The page might have been referenced via a
> > +                            * pte, in which case it is not idle. Clear
> > +                            * refs and recheck.
> > +                            */
> > +                           kpageidle_clear_pte_refs(page);
> > +                           if (page_is_idle(page))
> > +                                   idle_bitmap |= 1ULL << bit;
> 
> I don't understand what's going on here.  More details, please?

The output is a bitmap, which is stored as an array of 8-byte elements,
where byte order within each word is native, i.e. if page at pfn #i is
idle we need to set bit #i%64 of element #i/64 of the array. I'll
reflect this in the documentation.

> 
> > +                   }
> > +                   put_page(page);
> > +           }
> > +           if (bit == KPMBITS - 1) {
> > +                   if (put_user(idle_bitmap, out)) {
> > +                           ret = -EFAULT;
> > +                           break;
> > +                   }
> > +                   idle_bitmap = 0;
> > +                   out++;
> > +           }
> > +   }
> > +
> > +   *ppos += (char __user *)out - buf;
> > +   if (!ret)
> > +           ret = (char __user *)out - buf;
> > +   return ret;
> > +}
> > +
> > +static ssize_t kpageidle_write(struct file *file, const char __user *buf,
> > +                          size_t count, loff_t *ppos)
> > +{
> > +   const u64 __user *in = (const u64 __user *)buf;
> > +   struct page *page;
> > +   unsigned long pfn, end_pfn;
> > +   ssize_t ret = 0;
> > +   u64 idle_bitmap = 0;
> > +   int bit;
> > +
> > +   if (*ppos & KPMMASK || count & KPMMASK)
> > +           return -EINVAL;
> > +
> > +   pfn = *ppos * BITS_PER_BYTE;
> > +   if (pfn >= max_pfn)
> > +           return -ENXIO;
> > +
> > +   end_pfn = pfn + count * BITS_PER_BYTE;
> > +   if (end_pfn > max_pfn)
> > +           end_pfn = ALIGN(max_pfn, KPMBITS);
> > +
> > +   for (; pfn < end_pfn; pfn++) {
> > +           bit = pfn % KPMBITS;
> > +           if (bit == 0) {
> > +                   if (get_user(idle_bitmap, in)) {
> > +                           ret = -EFAULT;
> > +                           break;
> > +                   }
> > +                   in++;
> > +           }
> > +           if (idle_bitmap >> bit & 1) {
> 
> Hate it when I have to go look up a C precedence table.  This is
> 
>               if ((idle_bitmap >> bit) & 1) {

Fixed.

Here goes the incremental patch with all the fixes:
---
diff --git a/fs/proc/page.c b/fs/proc/page.c
index 7ff7cba8617b..9daa6e92450f 100644
--- a/fs/proc/page.c
+++ b/fs/proc/page.c
@@ -362,7 +362,11 @@ static int kpageidle_clear_pte_refs_one(struct page *page,
 
 static void kpageidle_clear_pte_refs(struct page *page)
 {
-       struct rmap_walk_control rwc = {
+       /*
+        * Since rwc.arg is unused, rwc is effectively immutable, so we
+        * can make it static const to save some cycles and stack.
+        */
+       static const struct rmap_walk_control rwc = {
                .rmap_one = kpageidle_clear_pte_refs_one,
                .anon_lock = page_lock_anon_vma_read,
        };
@@ -376,7 +380,7 @@ static void kpageidle_clear_pte_refs(struct page *page)
        if (need_lock && !trylock_page(page))
                return;
 
-       rmap_walk(page, &rwc);
+       rmap_walk(page, (struct rmap_walk_control *)&rwc);
 
        if (need_lock)
                unlock_page(page);
@@ -466,7 +470,7 @@ static ssize_t kpageidle_write(struct file *file, const 
char __user *buf,
                        }
                        in++;
                }
-               if (idle_bitmap >> bit & 1) {
+               if ((idle_bitmap >> bit) & 1) {
                        page = kpageidle_get_page(pfn);
                        if (page) {
                                kpageidle_clear_pte_refs(page);
--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to [email protected]
More majordomo info at  http://vger.kernel.org/majordomo-info.html
Please read the FAQ at  http://www.tux.org/lkml/

Reply via email to