bch error correction (t=4 and t=8) for 512 bytes support added.
Tested in omap-3630 es-1.1 silicon.

Need to select the bch-ecc from board file. E.g.
arch/arm/mach-omap2/board-flash.c: board_nand_init()
board_nand_data.ecc_opt = OMAP_ECC_BCH4_CODE_HW

This patch has dependency on -
http://www.mail-archive.com/linux-omap@vger.kernel.org/msg42658.html

Signed-off-by: Sukumar Ghorai <s-gho...@ti.com>
---
 arch/arm/mach-omap2/gpmc.c             |  126 ++++++++---
 arch/arm/plat-omap/include/plat/gpmc.h |    6 +-
 drivers/mtd/nand/Makefile              |    1 +
 drivers/mtd/nand/omap2.c               |  119 ++++++++--
 drivers/mtd/nand/omap_bch_decoder.c    |  393 ++++++++++++++++++++++++++++++++
 5 files changed, 583 insertions(+), 62 deletions(-)
 create mode 100644 drivers/mtd/nand/omap_bch_decoder.c

diff --git a/arch/arm/mach-omap2/gpmc.c b/arch/arm/mach-omap2/gpmc.c
index 29c9732..91cfdca 100644
--- a/arch/arm/mach-omap2/gpmc.c
+++ b/arch/arm/mach-omap2/gpmc.c
@@ -48,6 +48,7 @@
 #define GPMC_ECC_CONTROL       0x1f8
 #define GPMC_ECC_SIZE_CONFIG   0x1fc
 #define GPMC_ECC1_RESULT        0x200
+#define GPMC_ECC_BCH_RESULT_0  0x240
 
 #define GPMC_CS0_OFFSET                0x60
 #define GPMC_CS_SIZE           0x30
@@ -94,7 +95,6 @@ static struct resource        gpmc_mem_root;
 static struct resource gpmc_cs_mem[GPMC_CS_NUM];
 static DEFINE_SPINLOCK(gpmc_mem_lock);
 static unsigned int gpmc_cs_map;       /* flag for cs which are initialized */
-static int gpmc_ecc_used = -EINVAL;    /* cs using ecc engine */
 
 static void __iomem *gpmc_base;
 
@@ -832,52 +832,77 @@ void omap3_gpmc_restore_context(void)
 
 /**
  * gpmc_enable_hwecc - enable hardware ecc functionality
+ * @ecc_type: ecc type e.g. Hamming, BCH
  * @cs: chip select number
  * @mode: read/write mode
  * @dev_width: device bus width(1 for x16, 0 for x8)
  * @ecc_size: bytes for which ECC will be generated
  */
-int gpmc_enable_hwecc(int cs, int mode, int dev_width, int ecc_size)
+int gpmc_enable_hwecc(int ecc_type, int cs, int mode,
+                       int dev_width, int ecc_size)
 {
-       unsigned int val;
-
-       /* check if ecc module is in used */
-       if (gpmc_ecc_used != -EINVAL)
-               return -EINVAL;
-
-       gpmc_ecc_used = cs;
-
-       /* clear ecc and enable bits */
-       val = ((0x00000001<<8) | 0x00000001);
-       gpmc_write_reg(GPMC_ECC_CONTROL, val);
-
-       /* program ecc and result sizes */
-       val = ((((ecc_size >> 1) - 1) << 22) | (0x0000000F));
-       gpmc_write_reg(GPMC_ECC_SIZE_CONFIG, val);
+       unsigned int bch_mod = 0, bch_wrapmode = 0, eccsize1 = 0, eccsize0 = 0;
+       unsigned int ecc_conf_val = 0, ecc_size_conf_val = 0;
 
        switch (mode) {
        case GPMC_ECC_READ:
-               gpmc_write_reg(GPMC_ECC_CONTROL, 0x101);
+               if (ecc_type == OMAP_ECC_BCH4_CODE_HW) {
+                       eccsize1 = 0xD; eccsize0 = 0x48;
+                       bch_mod = 0;
+                       bch_wrapmode = 0x09;
+               } else if (ecc_type == OMAP_ECC_BCH8_CODE_HW) {
+                       eccsize1 = 0x1A; eccsize0 = 0x18;
+                       bch_mod = 1;
+                       bch_wrapmode = 0x04;
+               } else
+                       eccsize1 = ((ecc_size >> 1) - 1) << 22;
                break;
+
        case GPMC_ECC_READSYN:
-                gpmc_write_reg(GPMC_ECC_CONTROL, 0x100);
                break;
+
        case GPMC_ECC_WRITE:
-               gpmc_write_reg(GPMC_ECC_CONTROL, 0x101);
+               if (ecc_type == OMAP_ECC_BCH4_CODE_HW) {
+                       eccsize1 = 0x20; eccsize0 = 0x00;
+                       bch_mod = 0;
+                       bch_wrapmode = 0x06;
+               } else if (ecc_type == OMAP_ECC_BCH8_CODE_HW) {
+                       eccsize1 = 0x20; eccsize0 = 0x00;
+                       bch_mod = 1;
+                       bch_wrapmode = 0x06;
+               } else
+                       eccsize1 = ((ecc_size >> 1) - 1) << 22;
                break;
+
        default:
                printk(KERN_INFO "Error: Unrecognized Mode[%d]!\n", mode);
                break;
        }
 
-       /* (ECC 16 or 8 bit col) | ( CS  )  | ECC Enable */
-       val = (dev_width << 7) | (cs << 1) | (0x1);
-       gpmc_write_reg(GPMC_ECC_CONFIG, val);
+       /* clear ecc and enable bits */
+       if ((ecc_type == OMAP_ECC_BCH4_CODE_HW) ||
+               (ecc_type == OMAP_ECC_BCH8_CODE_HW)) {
+               gpmc_write_reg(GPMC_ECC_CONTROL, 0x00000001);
+               ecc_size_conf_val = (eccsize1 << 22) | (eccsize0 << 12);
+               ecc_conf_val = ((0x01 << 16) | (bch_mod << 12)
+                       | (bch_wrapmode << 8) | (dev_width << 7)
+                       | (0x03 << 4) | (cs << 1) | (0x1));
+       } else {
+               gpmc_write_reg(GPMC_ECC_CONTROL, 0x00000101);
+               ecc_size_conf_val = (eccsize1 << 22) | 0x0000000F;
+               ecc_conf_val = (dev_width << 7) | (cs << 1) | (0x1);
+       }
+
+       gpmc_write_reg(GPMC_ECC_SIZE_CONFIG, ecc_size_conf_val);
+       gpmc_write_reg(GPMC_ECC_CONFIG, ecc_conf_val);
+       gpmc_write_reg(GPMC_ECC_CONTROL, 0x00000101);
+
        return 0;
 }
 
 /**
  * gpmc_calculate_ecc - generate non-inverted ecc bytes
+ * @ecc_type: ecc type e.g. Hamming, BCH
  * @cs: chip select number
  * @dat: data pointer over which ecc is computed
  * @ecc_code: ecc code buffer
@@ -888,20 +913,51 @@ int gpmc_enable_hwecc(int cs, int mode, int dev_width, 
int ecc_size)
  * an erased page will produce an ECC mismatch between generated and read
  * ECC bytes that has to be dealt with separately.
  */
-int gpmc_calculate_ecc(int cs, const u_char *dat, u_char *ecc_code)
+int gpmc_calculate_ecc(int ecc_type, int cs,
+                       const u_char *dat, u_char *ecc_code)
 {
-       unsigned int val = 0x0;
-
-       if (gpmc_ecc_used != cs)
-               return -EINVAL;
+       unsigned int reg;
+       unsigned int val1 = 0x0, val2 = 0x0;
+       unsigned int val3 = 0x0, val4 = 0x0;
+       int i;
 
-       /* read ecc result */
-       val = gpmc_read_reg(GPMC_ECC1_RESULT);
-       *ecc_code++ = val;          /* P128e, ..., P1e */
-       *ecc_code++ = val >> 16;    /* P128o, ..., P1o */
-       /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
-       *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
+       if ((ecc_type == OMAP_ECC_BCH4_CODE_HW) ||
+               (ecc_type == OMAP_ECC_BCH8_CODE_HW)) {
+               for (i = 0; i < 4; i++) {
+                       /*
+                        * Reading HW ECC_BCH_Results
+                        * 0x240-0x24C, 0x250-0x25C, 0x260-0x26C, 0x270-0x27C
+                        */
+                       reg =  GPMC_ECC_BCH_RESULT_0 + (0x10 * i);
+                       val1 = gpmc_read_reg(reg);
+                       val2 = gpmc_read_reg(reg + 4);
+                       if (ecc_type == OMAP_ECC_BCH8_CODE_HW) {
+                               val3 = gpmc_read_reg(reg + 8);
+                               val4 = gpmc_read_reg(reg + 12);
+
+                               *ecc_code++ = (val4 & 0xFF);
+                               *ecc_code++ = ((val3 >> 24) & 0xFF);
+                               *ecc_code++ = ((val3 >> 16) & 0xFF);
+                               *ecc_code++ = ((val3 >> 8) & 0xFF);
+                               *ecc_code++ = (val3 & 0xFF);
+                               *ecc_code++ = ((val2 >> 24) & 0xFF);
+                       }
+                       *ecc_code++ = ((val2 >> 16) & 0xFF);
+                       *ecc_code++ = ((val2 >> 8) & 0xFF);
+                       *ecc_code++ = (val2 & 0xFF);
+                       *ecc_code++ = ((val1 >> 24) & 0xFF);
+                       *ecc_code++ = ((val1 >> 16) & 0xFF);
+                       *ecc_code++ = ((val1 >> 8) & 0xFF);
+                       *ecc_code++ = (val1 & 0xFF);
+               }
+       } else {
+               /* read ecc result */
+               val1 = gpmc_read_reg(GPMC_ECC1_RESULT);
+               *ecc_code++ = val1;          /* P128e, ..., P1e */
+               *ecc_code++ = val1 >> 16;    /* P128o, ..., P1o */
+               /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
+               *ecc_code++ = ((val1 >> 8) & 0x0f) | ((val1 >> 20) & 0xf0);
+       }
 
-       gpmc_ecc_used = -EINVAL;
        return 0;
 }
diff --git a/arch/arm/plat-omap/include/plat/gpmc.h 
b/arch/arm/plat-omap/include/plat/gpmc.h
index 49aea09..838c185 100644
--- a/arch/arm/plat-omap/include/plat/gpmc.h
+++ b/arch/arm/plat-omap/include/plat/gpmc.h
@@ -92,6 +92,8 @@ enum omap_ecc {
        OMAP_ECC_HAMMING_CODE_HW, /* gpmc to detect the error */
                /* 1-bit ecc: stored at begining of spare area as romcode */
        OMAP_ECC_HAMMING_CODE_HW_ROMCODE, /* gpmc method & romcode layout */
+       OMAP_ECC_BCH4_CODE_HW, /* gpmc bch detection & s/w method correction */
+       OMAP_ECC_BCH8_CODE_HW, /* gpmc bch detection & s/w method correction */
 };
 
 /*
@@ -156,6 +158,6 @@ extern int gpmc_cs_configure(int cs, int cmd, int wval);
 extern int gpmc_nand_read(int cs, int cmd);
 extern int gpmc_nand_write(int cs, int cmd, int wval);
 
-int gpmc_enable_hwecc(int cs, int mode, int dev_width, int ecc_size);
-int gpmc_calculate_ecc(int cs, const u_char *dat, u_char *ecc_code);
+int gpmc_enable_hwecc(int ecc, int cs, int mode, int dev_width, int ecc_size);
+int gpmc_calculate_ecc(int ecc, int cs, const u_char *dat, u_char *ecc_code);
 #endif
diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
index 8ad6fae..ae02711 100644
--- a/drivers/mtd/nand/Makefile
+++ b/drivers/mtd/nand/Makefile
@@ -29,6 +29,7 @@ obj-$(CONFIG_MTD_NAND_NDFC)           += ndfc.o
 obj-$(CONFIG_MTD_NAND_ATMEL)           += atmel_nand.o
 obj-$(CONFIG_MTD_NAND_GPIO)            += gpio.o
 obj-$(CONFIG_MTD_NAND_OMAP2)           += omap2.o
+obj-$(CONFIG_MTD_NAND_OMAP2)           += omap_bch_decoder.o
 obj-$(CONFIG_MTD_NAND_CM_X270)         += cmx270_nand.o
 obj-$(CONFIG_MTD_NAND_PXA3xx)          += pxa3xx_nand.o
 obj-$(CONFIG_MTD_NAND_TMIO)            += tmio_nand.o
diff --git a/drivers/mtd/nand/omap2.c b/drivers/mtd/nand/omap2.c
index 4e33972..14c7dfe 100644
--- a/drivers/mtd/nand/omap2.c
+++ b/drivers/mtd/nand/omap2.c
@@ -98,6 +98,8 @@
 static const char *part_probes[] = { "cmdlinepart", NULL };
 #endif
 
+int decode_bch(int select_4_8, unsigned char *ecc, unsigned int *err_loc);
+
 /* oob info generated runtime depending on ecc algorithm and layout selected */
 static struct nand_ecclayout omap_oobinfo;
 /* Define some generic bad / good block scan pattern which are used
@@ -130,7 +132,8 @@ struct omap_nand_info {
                OMAP_NAND_IO_WRITE,     /* write */
        } iomode;
        u_char                          *buf;
-       int                                     buf_len;
+       int                             buf_len;
+       int                             ecc_opt;
 };
 
 /**
@@ -529,7 +532,6 @@ static void omap_read_buf_irq_pref(struct mtd_info *mtd, 
u_char *buf, int len)
        struct omap_nand_info *info = container_of(mtd,
                                                struct omap_nand_info, mtd);
        int ret = 0;
-
        if (len <= mtd->oobsize) {
                omap_read_buf_pref(mtd, buf, len);
                return;
@@ -803,6 +805,8 @@ static int omap_correct_data(struct mtd_info *mtd, u_char 
*dat,
        struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
                                                        mtd);
        int blockCnt = 0, i = 0, ret = 0;
+       int j, eccsize, eccflag, count;
+       unsigned int err_loc[8];
 
        /* Ex NAND_ECC_HW12_2048 */
        if ((info->nand.ecc.mode == NAND_ECC_HW) &&
@@ -811,16 +815,57 @@ static int omap_correct_data(struct mtd_info *mtd, u_char 
*dat,
        else
                blockCnt = 1;
 
-       for (i = 0; i < blockCnt; i++) {
-               if (memcmp(read_ecc, calc_ecc, 3) != 0) {
-                       ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
-                       if (ret < 0)
-                               return ret;
+       switch (info->ecc_opt) {
+       case OMAP_ECC_HAMMING_CODE_HW:
+       case OMAP_ECC_HAMMING_CODE_HW_ROMCODE:
+               for (i = 0; i < blockCnt; i++) {
+                       if (memcmp(read_ecc, calc_ecc, 3) != 0) {
+                               ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
+                               if (ret < 0)
+                                       return ret;
+                       }
+                       read_ecc += 3;
+                       calc_ecc += 3;
+                       dat      += 512;
                }
-               read_ecc += 3;
-               calc_ecc += 3;
-               dat      += 512;
+               break;
+
+       case OMAP_ECC_BCH4_CODE_HW:
+               eccsize = 7;
+               gpmc_calculate_ecc(info->ecc_opt, info->gpmc_cs, dat, calc_ecc);
+               for (i = 0; i < blockCnt; i++) {
+                       /* check if any ecc error */
+                       eccflag = 0;
+                       for (j = 0; (j < eccsize) && (eccflag == 0); j++)
+                               if (calc_ecc[j] != 0)
+                                       eccflag = 1;
+
+                       if (eccflag == 1) {
+                               eccflag = 0;
+                               for (j = 0; (j < eccsize) &&
+                                               (eccflag == 0); j++)
+                                       if (read_ecc[j] != 0xFF)
+                                               eccflag = 1;
+                       }
+
+                       count = 0;
+                       if (eccflag == 1)
+                               count = decode_bch(0, calc_ecc, err_loc);
+
+                       for (j = 0; j < count; j++) {
+                               if (err_loc[j] < 4096)
+                                       dat[err_loc[j] >> 3] ^=
+                                                       1 << (err_loc[j] & 7);
+                               /* else, not interested to correct ecc */
+                       }
+
+                       calc_ecc = calc_ecc + eccsize;
+                       read_ecc = read_ecc + eccsize;
+                       dat += 512;
+               }
+               break;
        }
+
        return 0;
 }
 
@@ -841,7 +886,7 @@ static int omap_calculate_ecc(struct mtd_info *mtd, const 
u_char *dat,
 {
        struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
                                                        mtd);
-       return gpmc_calculate_ecc(info->gpmc_cs, dat, ecc_code);
+       return gpmc_calculate_ecc(info->ecc_opt, info->gpmc_cs, dat, ecc_code);
 }
 
 /**
@@ -856,7 +901,8 @@ static void omap_enable_hwecc(struct mtd_info *mtd, int 
mode)
        struct nand_chip *chip = mtd->priv;
        unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
 
-       gpmc_enable_hwecc(info->gpmc_cs, mode, dev_width, info->nand.ecc.size);
+       gpmc_enable_hwecc(info->ecc_opt, info->gpmc_cs, mode,
+                               dev_width, info->nand.ecc.size);
 }
 
 /**
@@ -953,6 +999,7 @@ static int __devinit omap_nand_probe(struct platform_device 
*pdev)
        info->mtd.priv          = &info->nand;
        info->mtd.name          = dev_name(&pdev->dev);
        info->mtd.owner         = THIS_MODULE;
+       info->ecc_opt           = pdata->ecc_opt;
 
        info->nand.options      = pdata->devsize;
        info->nand.options      |= NAND_SKIP_BBTSCAN;
@@ -991,7 +1038,6 @@ static int __devinit omap_nand_probe(struct 
platform_device *pdev)
                info->nand.waitfunc = omap_wait;
                info->nand.chip_delay = 50;
        }
-
        switch (pdata->xfer_type) {
        case NAND_OMAP_PREFETCH_POLLED:
                info->nand.read_buf   = omap_read_buf_pref;
@@ -1052,10 +1098,17 @@ static int __devinit omap_nand_probe(struct 
platform_device *pdev)
        /* selsect the ecc type */
        if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_DEFAULT)
                info->nand.ecc.mode = NAND_ECC_SOFT;
-       else if ((pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW) ||
-               (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE)) {
-               info->nand.ecc.bytes            = 3;
-               info->nand.ecc.size             = 512;
+       else {
+               if (pdata->ecc_opt == OMAP_ECC_BCH4_CODE_HW) {
+                       info->nand.ecc.bytes    = 4*7;
+                       info->nand.ecc.size     = 4*512;
+               } else if (pdata->ecc_opt == OMAP_ECC_BCH8_CODE_HW) {
+                       info->nand.ecc.bytes    = 13;
+                       info->nand.ecc.size     = 4*512;
+               } else {
+                       info->nand.ecc.bytes    = 3;
+                       info->nand.ecc.size     = 512;
+               }
                info->nand.ecc.calculate        = omap_calculate_ecc;
                info->nand.ecc.hwctl            = omap_enable_hwecc;
                info->nand.ecc.correct          = omap_correct_data;
@@ -1073,8 +1126,8 @@ static int __devinit omap_nand_probe(struct 
platform_device *pdev)
                }
        }
 
-       /* rom code layout */
-       if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE) {
+       /* select ecc lyout */
+       if (info->nand.ecc.mode != NAND_ECC_SOFT) {
 
                if (info->nand.options & NAND_BUSWIDTH_16)
                        offset = 2;
@@ -1082,15 +1135,31 @@ static int __devinit omap_nand_probe(struct 
platform_device *pdev)
                        offset = 1;
                        info->nand.badblock_pattern = &bb_descrip_flashbased;
                }
-               omap_oobinfo.eccbytes = 3 * (info->mtd.oobsize/16);
-               for (i = 0; i < omap_oobinfo.eccbytes; i++)
-                       omap_oobinfo.eccpos[i] = i+offset;
 
-               omap_oobinfo.oobfree->offset = offset + omap_oobinfo.eccbytes;
-               omap_oobinfo.oobfree->length = info->mtd.oobsize -
-                                       (offset + omap_oobinfo.eccbytes);
+               if (info->mtd.oobsize == 64)
+                       omap_oobinfo.eccbytes = info->nand.ecc.bytes *
+                                               2048/info->nand.ecc.size;
+               else
+                       omap_oobinfo.eccbytes = info->nand.ecc.bytes;
+
+               if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE) {
+                       for (i = 0; i < omap_oobinfo.eccbytes; i++)
+                               omap_oobinfo.eccpos[i] = i + offset;
+                       omap_oobinfo.oobfree->offset =
+                                               offset + omap_oobinfo.eccbytes;
+                       omap_oobinfo.oobfree->length = info->mtd.oobsize -
+                                               offset - omap_oobinfo.eccbytes;
+               } else {
 
+                       omap_oobinfo.oobfree->offset = offset;
+                       omap_oobinfo.oobfree->length = info->mtd.oobsize -
+                                               offset - omap_oobinfo.eccbytes;
+                       offset = info->mtd.oobsize - omap_oobinfo.eccbytes;
+                       for (i = 0; i < omap_oobinfo.eccbytes; i++)
+                               omap_oobinfo.eccpos[i] = i + offset;
+               }
                info->nand.ecc.layout = &omap_oobinfo;
+
        }
 
 #ifdef CONFIG_MTD_PARTITIONS
diff --git a/drivers/mtd/nand/omap_bch_decoder.c 
b/drivers/mtd/nand/omap_bch_decoder.c
new file mode 100644
index 0000000..da42bda
--- /dev/null
+++ b/drivers/mtd/nand/omap_bch_decoder.c
@@ -0,0 +1,393 @@
+/*
+ * drivers/mtd/nand/omap_omap_bch_decoder.c
+ *
+ * Whole BCH ECC Decoder (Post hardware generated syndrome decoding)
+ *
+ * Copyright (c) 2007 Texas Instruments
+ *
+ * Author: Sukumar Ghorai <s-gho...@ti.com
+ *                Michael Fillinger <m-fillin...@ti.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+#undef DEBUG
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+
+#define mm             13
+#define kk_shorten     4096
+#define nn             8191    /* Length of codeword, n = 2**mm - 1 */
+
+#define PPP    0x201B  /* Primary Polynomial : x^13 + x^4 + x^3 + x + 1 */
+#define P      0x001B  /* With omitted x^13 */
+#define POLY   12      /* degree of the primary Polynomial less one */
+
+/**
+ * mpy_mod_gf - GALOIS field multiplier
+ * Input  : A(x), B(x)
+ * Output : A(x)*B(x) mod P(x)
+ */
+static unsigned int mpy_mod_gf(unsigned int a, unsigned int b)
+{
+       unsigned int R = 0;
+       unsigned int R1 = 0;
+       unsigned int k = 0;
+
+       for (k = 0; k < mm; k++) {
+
+               R = (R << 1) & 0x1FFE;
+               if (R1 == 1)
+                       R ^= P;
+
+               if (((a >> (POLY - k)) & 1) == 1)
+                       R ^= b;
+
+               if (k < POLY)
+                       R1 = (R >> POLY) & 1;
+       }
+       return R;
+}
+
+/**
+ * chien - CHIEN search
+ *
+ * @location - Error location vector pointer
+ *
+ * Inputs  : ELP(z)
+ *          No. of found errors
+ *          Size of input codeword
+ * Outputs : Up to 8 locations
+ *          No. of errors
+ */
+static int chien(unsigned int select_4_8, int err_nums,
+                               unsigned int err[], unsigned int *location)
+{
+       int i, count; /* Number of dectected errors */
+       /* Contains accumulation of evaluation at x^i (i:1->8) */
+       unsigned int gammas[8] = {0};
+       unsigned int alpha;
+       unsigned int bit, ecc_bits;
+       unsigned int elp_sum;
+
+       ecc_bits = (select_4_8 == 0) ? 52 : 104;
+
+       /* Start evaluation at Alpha**8192 and decreasing */
+       for (i = 0; i < 8; i++)
+               gammas[i] = err[i];
+
+       count = 0;
+       for (i = 1; (i <= nn) && (count < err_nums); i++) {
+
+               /* Result of evaluation at root */
+               elp_sum = 1 ^ gammas[0] ^ gammas[1] ^
+                               gammas[2] ^ gammas[3] ^
+                               gammas[4] ^ gammas[5] ^
+                               gammas[6] ^ gammas[7];
+
+               alpha = PPP >> 1;
+               gammas[0] = mpy_mod_gf(gammas[0], alpha);
+               alpha = mpy_mod_gf(alpha, (PPP >> 1));  /* x alphha^-2 */
+               gammas[1] = mpy_mod_gf(gammas[1], alpha);
+               alpha = mpy_mod_gf(alpha, (PPP >> 1));  /* x alphha^-2 */
+               gammas[2] = mpy_mod_gf(gammas[2], alpha);
+               alpha = mpy_mod_gf(alpha, (PPP >> 1));  /* x alphha^-3 */
+               gammas[3] = mpy_mod_gf(gammas[3], alpha);
+               alpha = mpy_mod_gf(alpha, (PPP >> 1));  /* x alphha^-4 */
+               gammas[4] = mpy_mod_gf(gammas[4], alpha);
+               alpha = mpy_mod_gf(alpha, (PPP >> 1));  /* x alphha^-5 */
+               gammas[5] = mpy_mod_gf(gammas[5], alpha);
+               alpha = mpy_mod_gf(alpha, (PPP >> 1));  /* x alphha^-6 */
+               gammas[6] = mpy_mod_gf(gammas[6], alpha);
+               alpha = mpy_mod_gf(alpha, (PPP >> 1));  /* x alphha^-7 */
+               gammas[7] = mpy_mod_gf(gammas[7], alpha);
+
+               if (elp_sum == 0) {
+                       /* calculate bit position in main data area */
+                       bit = ((i-1) & ~7)|(7-((i-1) & 7));
+                       if (i >= 2 * ecc_bits)
+                               location[count++] =
+                                       kk_shorten - (bit - 2 * ecc_bits) - 1;
+               }
+       }
+
+       /* Failure: No. of detected errors != No. or corrected errors */
+       if (count != err_nums) {
+               count = -1;
+               printk(KERN_ERR "BCH decoding failed\n");
+       }
+       for (i = 0; i < count; i++)
+               pr_debug("%d ", location[i]);
+
+       return count;
+}
+
+/* synd : 16 Syndromes
+ * return: gamaas - Coefficients to the error polynomial
+ * return: : Number of detected errors
+*/
+static unsigned int berlekamp(unsigned int select_4_8,
+                       unsigned int synd[], unsigned int err[])
+{
+       int loop, iteration;
+       unsigned int LL = 0;            /* Detected errors */
+       unsigned int d = 0;     /* Distance between Syndromes and ELP[n](z) */
+       unsigned int invd = 0;          /* Inverse of d */
+       /* Intermediate ELP[n](z).
+        * Final ELP[n](z) is Error Location Polynomial
+        */
+       unsigned int gammas[16] = {0};
+       /* Intermediate normalized ELP[n](z) : D[n](z) */
+       unsigned int D[16] = {0};
+       /* Temporary value that holds an ELP[n](z) coefficient */
+       unsigned int next_gamma = 0;
+
+       int e = 0;
+       unsigned int sign = 0;
+       unsigned int u = 0;
+       unsigned int v = 0;
+       unsigned int C1 = 0, C2 = 0;
+       unsigned int ss = 0;
+       unsigned int tmp_v = 0, tmp_s = 0;
+       unsigned int tmp_poly;
+
+       /*-------------- Step 0 ------------------*/
+       for (loop = 0; loop < 16; loop++)
+               gammas[loop] = 0;
+       gammas[0] = 1;
+       D[1] = 1;
+
+       iteration = 0;
+       LL = 0;
+       while ((iteration < ((select_4_8+1)*2*4)) &&
+                       (LL <= ((select_4_8+1)*4))) {
+
+               pr_debug("\nIteration.............%d\n", iteration);
+               d = 0;
+               /* Step: 0 */
+               for (loop = 0; loop <= LL; loop++) {
+                       tmp_poly = mpy_mod_gf(
+                                       gammas[loop], synd[iteration - loop]);
+                       d ^= tmp_poly;
+                       pr_debug("%02d. s=0 LL=%x poly %x\n",
+                                       loop, LL, tmp_poly);
+               }
+
+               /* Step 1: 1 cycle only to perform inversion */
+               v = d << 1;
+               e = -1;
+               sign = 1;
+               ss = 0x2000;
+               invd = 0;
+               u = PPP;
+               for (loop = 0; (d != 0) && (loop <= (2 * POLY)); loop++) {
+                       pr_debug("%02d. s=1 LL=%x poly NULL\n",
+                                               loop, LL);
+                       C1 = (v >> 13) & 1;
+                       C2 = C1 & sign;
+
+                       sign ^= C2 ^ (e == 0);
+
+                       tmp_v = v;
+                       tmp_s = ss;
+
+                       if (C1 == 1) {
+                               v ^= u;
+                               ss ^= invd;
+                       }
+                       v = (v << 1) & 0x3FFF;
+                       if (C2 == 1) {
+                               u = tmp_v;
+                               invd = tmp_s;
+                               e = -e;
+                       }
+                       invd >>= 1;
+                       e--;
+               }
+
+               for (loop = 0; (d != 0) && (loop <= (iteration + 1)); loop++) {
+                       /* Step 2
+                        * Interleaved with Step 3, if L<(n-k)
+                        * invd: Update of ELP[n](z) = ELP[n-1](z) - d.D[n-1](z)
+                        */
+
+                       /* Holds value of ELP coefficient until precedent
+                        * value does not have to be used anymore
+                        */
+                       tmp_poly = mpy_mod_gf(d, D[loop]);
+                       pr_debug("%02d. s=2 LL=%x poly %x\n",
+                                               loop, LL, tmp_poly);
+
+                       next_gamma = gammas[loop] ^ tmp_poly;
+                       if ((2 * LL) < (iteration + 1)) {
+                               /* Interleaving with Step 3
+                                * for parallelized update of ELP(z) and D(z)
+                                */
+                       } else {
+                               /* Update of ELP(z) only -> stay in Step 2 */
+                               gammas[loop] = next_gamma;
+                               if (loop == (iteration + 1)) {
+                                       /* to step 4 */
+                                       break;
+                               }
+                       }
+
+                       /* Step 3
+                        * Always interleaved with Step 2 (case when L<(n-k))
+                        * Update of D[n-1](z) = ELP[n-1](z)/d
+                        */
+                       D[loop] = mpy_mod_gf(gammas[loop], invd);
+                       pr_debug("%02d. s=3 LL=%x poly %x\n",
+                                       loop, LL, D[loop]);
+
+                       /* Can safely update ELP[n](z) */
+                       gammas[loop] = next_gamma;
+
+                       if (loop == (iteration + 1)) {
+                               /* If update finished */
+                               LL = iteration - LL + 1;
+                               /* to step 4 */
+                               break;
+                       }
+                       /* Else, interleaving to step 2*/
+               }
+
+               /* Step 4: Update D(z): i:0->L */
+               /* Final update of D[n](z) = D[n](z).z*/
+               for (loop = 0; loop < 15; loop++) /* Left Shift */
+                       D[15 - loop] = D[14 - loop];
+
+               D[0] = 0;
+
+               iteration++;
+       } /* while */
+
+       /* Processing finished, copy ELP to final registers : 0->2t-1*/
+       for (loop = 0; loop < 8; loop++)
+               err[loop] = gammas[loop+1];
+
+       pr_debug("\n Err poly:");
+       for (loop = 0; loop < 8; loop++)
+               pr_debug("0x%x ", err[loop]);
+
+       return LL;
+}
+
+/*
+ * syndrome - Generate syndrome components from hw generate syndrome
+ * r(x) = c(x) + e(x)
+ * s(x) = c(x) mod g(x) + e(x) mod g(x) =  e(x) mod g(x)
+ * so receiver checks if the syndrome s(x) = r(x) mod g(x) is equal to zero.
+ * unsigned int s[16]; - Syndromes
+ */
+static void syndrome(unsigned int select_4_8,
+                                       unsigned char *ecc, unsigned int syn[])
+{
+       unsigned int k, l, t;
+       unsigned int alpha_bit, R_bit;
+       int ecc_pos, ecc_min;
+
+       /* 2t-1 = 15 (for t=8) minimal polynomials of the first 15 powers of a
+        * primitive elemmants of GF(m); Even powers minimal polynomials are
+        * duplicate of odd powers' minimal polynomials.
+        * Odd powers of alpha (1 to 15)
+        */
+       unsigned int pow_alpha[8] = {0x0002, 0x0008, 0x0020, 0x0080,
+                                0x0200, 0x0800, 0x001B, 0x006C};
+
+       pr_debug("\n ECC[0..n]: ");
+       for (k = 0; k < 13; k++)
+               pr_debug("0x%x ", ecc[k]);
+
+       if (select_4_8 == 0) {
+               t = 4;
+               ecc_pos = 55; /* bits(52-bits): 55->4 */
+               ecc_min = 4;
+       } else {
+               t = 8;
+               ecc_pos = 103; /* bits: 103->0 */
+               ecc_min = 0;
+       }
+
+       /* total numbber of syndrom to be used is 2t */
+       /* Step1: calculate the odd syndrome(s) */
+       R_bit = ((ecc[ecc_pos/8] >> (7 - ecc_pos%8)) & 1);
+       ecc_pos--;
+       for (k = 0; k < t; k++)
+               syn[2 * k] = R_bit;
+
+       while (ecc_pos >= ecc_min) {
+               R_bit = ((ecc[ecc_pos/8] >> (7 - ecc_pos%8)) & 1);
+               ecc_pos--;
+
+               for (k = 0; k < t; k++) {
+                       /* Accumulate value of x^i at alpha^(2k+1) */
+                       if (R_bit == 1)
+                               syn[2*k] ^= pow_alpha[k];
+
+                       /* Compute a**(2k+1), using LSFR */
+                       for (l = 0; l < (2 * k + 1); l++) {
+                               alpha_bit = (pow_alpha[k] >> POLY) & 1;
+                               pow_alpha[k] = (pow_alpha[k] << 1) & 0x1FFF;
+                               if (alpha_bit == 1)
+                                       pow_alpha[k] ^= P;
+                       }
+               }
+       }
+
+       /* Step2: calculate the even syndrome(s)
+        * Compute S(a), where a is an even power of alpha
+        * Evenry even power of primitive element has the same minimal
+        * polynomial as some odd power of elemets.
+        * And based on S(a^2) = S^2(a)
+        */
+       for (k = 0; k < t; k++)
+               syn[2*k+1] = mpy_mod_gf(syn[k], syn[k]);
+
+       pr_debug("\n Syndromes: ");
+       for (k = 0; k < 16; k++)
+               pr_debug("0x%x ", syn[k]);
+}
+
+/**
+ * decode_bch - BCH decoder for 4- and 8-bit error correction
+ *
+ * @ecc - ECC syndrome generated by hw BCH engine
+ * @err_loc - pointer to error location array
+ *
+ * This function does post sydrome generation (hw generated) decoding
+ * for:-
+ * Dimension of Galoise Field: m = 13
+ * Length of codeword: n = 2**m - 1
+ * Number of errors that can be corrected: 4- or 8-bits
+ * Length of information bit: kk = nn - rr
+ */
+int decode_bch(int select_4_8, unsigned char *ecc, unsigned int *err_loc)
+{
+       int no_of_err;
+       unsigned int syn[16] = {0,};    /* 16 Syndromes */
+       unsigned int err_poly[8] = {0,};
+       /* Coefficients to the error polynomial
+        * ELP(x) = 1 + err0.x + err1.x^2 + ... + err7.x^8
+        */
+
+       /* Decoting involes three steps
+        * 1. Compute the syndrom from teh received codeword,
+        * 2. Find the error location polynomial from a set of equations
+        *     derived from the syndrome,
+        * 3. Use the error location polynomial to identify errants bits,
+        *
+        * And correcttion done by bit flips using error locaiton and expected
+        * to be outseide of this implementation.
+        */
+       syndrome(select_4_8, ecc, syn);
+       no_of_err = berlekamp(select_4_8, syn, err_poly);
+       if (no_of_err <= (4 << select_4_8))
+               no_of_err = chien(select_4_8, no_of_err, err_poly, err_loc);
+
+       return no_of_err;
+}
+EXPORT_SYMBOL(decode_bch);
+
-- 
1.7.0.4

--
To unsubscribe from this list: send the line "unsubscribe linux-omap" in
the body of a message to majord...@vger.kernel.org
More majordomo info at  http://vger.kernel.org/majordomo-info.html

Reply via email to