/* Thread module */ /* Interface to Sjoerd's portable C thread library */
#include "Python.h" #ifndef WITH_THREAD #error "Error! The rest of Python is not compiled with thread support." #error "Rerun configure, adding a --with-thread option." #error "Then run `make clean' followed by `make'." #endif #include "pythread.h" static PyObject *ThreadError; /* Lock objects */ typedef struct { PyObject_HEAD PyThread_type_lock lock_lock; } lockobject; staticforward PyTypeObject Locktype; unsigned long numThreads = 0; /* Anton */ static lockobject * newlockobject(void) { lockobject *self; self = PyObject_New(lockobject, &Locktype); if (self == NULL) return NULL; self->lock_lock = PyThread_allocate_lock(); if (self->lock_lock == NULL) { PyObject_Del(self); self = NULL; PyErr_SetString(ThreadError, "can't allocate lock"); } return self; } static void lock_dealloc(lockobject *self) { /* Unlock the lock so it's safe to free it */ PyThread_acquire_lock(self->lock_lock, 0); PyThread_release_lock(self->lock_lock); PyThread_free_lock(self->lock_lock); PyObject_Del(self); } static PyObject * lock_PyThread_acquire_lock(lockobject *self, PyObject *args) { int i; if (args != NULL) { if (!PyArg_Parse(args, "i", &i)) return NULL; } else i = 1; Py_BEGIN_ALLOW_THREADS i = PyThread_acquire_lock(self->lock_lock, i); Py_END_ALLOW_THREADS if (args == NULL) { Py_INCREF(Py_None); return Py_None; } else return PyInt_FromLong((long)i); } static char acquire_doc[] = "acquire([wait]) -> None or Boolean\n\ (PyThread_acquire_lock() is an obsolete synonym)\n\ \n\ Lock the lock. Without argument, this blocks if the lock is already\n\ locked (even by the same thread), waiting for another thread to release\n\ the lock, and return None when the lock is acquired.\n\ With a Boolean argument, this will only block if the argument is true,\n\ and the return value reflects whether the lock is acquired.\n\ The blocking operation is not interruptible."; static PyObject * lock_PyThread_release_lock(lockobject *self, PyObject *args) { if (!PyArg_NoArgs(args)) return NULL; /* Sanity check: the lock must be locked */ if (PyThread_acquire_lock(self->lock_lock, 0)) { PyThread_release_lock(self->lock_lock); PyErr_SetString(ThreadError, "release unlocked lock"); return NULL; } PyThread_release_lock(self->lock_lock); Py_INCREF(Py_None); return Py_None; } static char release_doc[] = "release()\n\ (PyThread_release_lock() is an obsolete synonym)\n\ \n\ Release the lock, allowing another thread that is blocked waiting for\n\ the lock to acquire the lock. The lock must be in the locked state,\n\ but it needn't be locked by the same thread that unlocks it."; static PyObject * lock_locked_lock(lockobject *self, PyObject *args) { if (!PyArg_NoArgs(args)) return NULL; if (PyThread_acquire_lock(self->lock_lock, 0)) { PyThread_release_lock(self->lock_lock); return PyInt_FromLong(0L); } return PyInt_FromLong(1L); } static char locked_doc[] = "locked() -> Boolean\n\ (locked_lock() is an obsolete synonym)\n\ \n\ Return whether the lock is in the locked state."; static PyMethodDef lock_methods[] = { {"acquire_lock", (PyCFunction)lock_PyThread_acquire_lock, METH_OLDARGS, acquire_doc}, {"acquire", (PyCFunction)lock_PyThread_acquire_lock, METH_OLDARGS, acquire_doc}, {"release_lock", (PyCFunction)lock_PyThread_release_lock, METH_OLDARGS, release_doc}, {"release", (PyCFunction)lock_PyThread_release_lock, METH_OLDARGS, release_doc}, {"locked_lock", (PyCFunction)lock_locked_lock, METH_OLDARGS, locked_doc}, {"locked", (PyCFunction)lock_locked_lock, METH_OLDARGS, locked_doc}, {NULL, NULL} /* sentinel */ }; static PyObject * lock_getattr(lockobject *self, char *name) { return Py_FindMethod(lock_methods, (PyObject *)self, name); } static PyTypeObject Locktype = { PyObject_HEAD_INIT(&PyType_Type) 0, /*ob_size*/ "thread.lock", /*tp_name*/ sizeof(lockobject), /*tp_size*/ 0, /*tp_itemsize*/ /* methods */ (destructor)lock_dealloc, /*tp_dealloc*/ 0, /*tp_print*/ (getattrfunc)lock_getattr, /*tp_getattr*/ 0, /*tp_setattr*/ 0, /*tp_compare*/ 0, /*tp_repr*/ }; /* Module functions */ struct bootstate { PyInterpreterState *interp; PyObject *func; PyObject *args; PyObject *keyw; }; static void t_bootstrap(void *boot_raw) { struct bootstate *boot = (struct bootstate *) boot_raw; PyThreadState *tstate; PyObject *res; tstate = PyThreadState_New(boot->interp); PyEval_AcquireThread(tstate); res = PyEval_CallObjectWithKeywords( boot->func, boot->args, boot->keyw); Py_DECREF(boot->func); Py_DECREF(boot->args); Py_XDECREF(boot->keyw); PyMem_DEL(boot_raw); if (res == NULL) { if (PyErr_ExceptionMatches(PyExc_SystemExit)) PyErr_Clear(); else { PySys_WriteStderr("Unhandled exception in thread:\n"); PyErr_PrintEx(0); } } else Py_DECREF(res); PyThreadState_Clear(tstate); PyThreadState_DeleteCurrent(); PyThread_exit_thread(); } static PyObject * thread_PyThread_start_new_thread(PyObject *self, PyObject *fargs) { PyObject *func, *args, *keyw = NULL; struct bootstate *boot; long ident; if (!PyArg_ParseTuple(fargs, "OO|O:start_new_thread", &func, &args, &keyw)) return NULL; if (!PyCallable_Check(func)) { PyErr_SetString(PyExc_TypeError, "first arg must be callable"); return NULL; } if (!PyTuple_Check(args)) { PyErr_SetString(PyExc_TypeError, "2nd arg must be a tuple"); return NULL; } if (keyw != NULL && !PyDict_Check(keyw)) { PyErr_SetString(PyExc_TypeError, "optional 3rd arg must be a dictionary"); return NULL; } boot = PyMem_NEW(struct bootstate, 1); if (boot == NULL) return PyErr_NoMemory(); boot->interp = PyThreadState_Get()->interp; boot->func = func; boot->args = args; boot->keyw = keyw; Py_INCREF(func); Py_INCREF(args); Py_XINCREF(keyw); PyEval_InitThreads(); /* Start the interpreter's thread-awareness */ ident = PyThread_start_new_thread(t_bootstrap, (void*) boot); if (ident == -1) { PyErr_SetString(ThreadError, "can't start new thread\n"); Py_DECREF(func); Py_DECREF(args); Py_XDECREF(keyw); PyMem_DEL(boot); return NULL; } else /* Anton */ { numThreads ++; } /* Anton */ return PyInt_FromLong(ident); } static char start_new_doc[] = "start_new_thread(function, args[, kwargs])\n\ (start_new() is an obsolete synonym)\n\ \n\ Start a new thread and return its identifier. The thread will call the\n\ function with positional arguments from the tuple args and keyword arguments\n\ taken from the optional dictionary kwargs. The thread exits when the\n\ function returns; the return value is ignored. The thread will also exit\n\ when the function raises an unhandled exception; a stack trace will be\n\ printed unless the exception is SystemExit.\n"; static PyObject * thread_PyThread_exit_thread(PyObject *self, PyObject *args) { numThreads--; if (!PyArg_NoArgs(args)) return NULL; PyErr_SetNone(PyExc_SystemExit); return NULL; } static char exit_doc[] = "exit()\n\ (PyThread_exit_thread() is an obsolete synonym)\n\ \n\ This is synonymous to ``raise SystemExit''. It will cause the current\n\ thread to exit silently unless the exception is caught."; #ifndef NO_EXIT_PROG static PyObject * thread_PyThread_exit_prog(PyObject *self, PyObject *args) { int sts; if (!PyArg_Parse(args, "i", &sts)) return NULL; Py_Exit(sts); /* Calls PyThread_exit_prog(sts) or _PyThread_exit_prog(sts) */ for (;;) { } /* Should not be reached */ } #endif static PyObject * thread_PyThread_allocate_lock(PyObject *self, PyObject *args) { if (!PyArg_NoArgs(args)) return NULL; return (PyObject *) newlockobject(); } static char allocate_doc[] = "allocate_lock() -> lock object\n\ (allocate() is an obsolete synonym)\n\ \n\ Create a new lock object. See LockType.__doc__ for information about locks."; static PyObject * thread_get_ident(PyObject *self, PyObject *args) { long ident; if (!PyArg_NoArgs(args)) return NULL; ident = PyThread_get_thread_ident(); if (ident == -1) { PyErr_SetString(ThreadError, "no current thread ident"); return NULL; } return PyInt_FromLong(ident); } static char get_ident_doc[] = "get_ident() -> integer\n\ \n\ Return a non-zero integer that uniquely identifies the current thread\n\ amongst other threads that exist simultaneously.\n\ This may be used to identify per-thread resources.\n\ Even though on some platforms threads identities may appear to be\n\ allocated consecutive numbers starting at 1, this behavior should not\n\ be relied upon, and the number should be seen purely as a magic cookie.\n\ A thread's identity may be reused for another thread after it exits."; static PyMethodDef thread_methods[] = { {"start_new_thread", (PyCFunction)thread_PyThread_start_new_thread, METH_VARARGS, start_new_doc}, {"start_new", (PyCFunction)thread_PyThread_start_new_thread, METH_VARARGS, start_new_doc}, {"allocate_lock", (PyCFunction)thread_PyThread_allocate_lock, METH_OLDARGS, allocate_doc}, {"allocate", (PyCFunction)thread_PyThread_allocate_lock, METH_OLDARGS, allocate_doc}, {"exit_thread", (PyCFunction)thread_PyThread_exit_thread, METH_OLDARGS, exit_doc}, {"exit", (PyCFunction)thread_PyThread_exit_thread, METH_OLDARGS, exit_doc}, {"get_ident", (PyCFunction)thread_get_ident, METH_OLDARGS, get_ident_doc}, #ifndef NO_EXIT_PROG {"exit_prog", (PyCFunction)thread_PyThread_exit_prog}, #endif {NULL, NULL} /* sentinel */ }; /* Initialization function */ static char thread_doc[] = "This module provides primitive operations to write multi-threaded programs.\n\ The 'threading' module provides a more convenient interface."; static char lock_doc[] = "A lock object is a synchronization primitive. To create a lock,\n\ call the PyThread_allocate_lock() function. Methods are:\n\ \n\ acquire() -- lock the lock, possibly blocking until it can be obtained\n\ release() -- unlock of the lock\n\ locked() -- test whether the lock is currently locked\n\ \n\ A lock is not owned by the thread that locked it; another thread may\n\ unlock it. A thread attempting to lock a lock that it has already locked\n\ will block until another thread unlocks it. Deadlocks may ensue."; DL_EXPORT(void) initthread(void) { PyObject *m, *d; /* Create the module and add the functions */ m = Py_InitModule3("thread", thread_methods, thread_doc); /* Add a symbolic constant */ d = PyModule_GetDict(m); ThreadError = PyErr_NewException("thread.error", NULL, NULL); PyDict_SetItemString(d, "error", ThreadError); Locktype.tp_doc = lock_doc; Py_INCREF(&Locktype); PyDict_SetItemString(d, "LockType", (PyObject *)&Locktype); /* Initialize the C thread library */ PyThread_init_thread(); }
/* Posix threads interface */ #include <stdlib.h> #include <string.h> #include <pthread.h> #include <signal.h> /* try to determine what version of the Pthread Standard is installed. * this is important, since all sorts of parameter types changed from * draft to draft and there are several (incompatible) drafts in * common use. these macros are a start, at least. * 12 May 1997 -- david arnold <[EMAIL PROTECTED]> */ #if defined(__ultrix) && defined(__mips) && defined(_DECTHREADS_) /* _DECTHREADS_ is defined in cma.h which is included by pthread.h */ # define PY_PTHREAD_D4 #elif defined(__osf__) && defined (__alpha) /* _DECTHREADS_ is defined in cma.h which is included by pthread.h */ # if !defined(_PTHREAD_ENV_ALPHA) || defined(_PTHREAD_USE_D4) || defined(PTHREAD_USE_D4) # define PY_PTHREAD_D4 # else # define PY_PTHREAD_STD # endif #elif defined(_AIX) /* SCHED_BG_NP is defined if using AIX DCE pthreads * but it is unsupported by AIX 4 pthreads. Default * attributes for AIX 4 pthreads equal to NULL. For * AIX DCE pthreads they should be left unchanged. */ # if !defined(SCHED_BG_NP) # define PY_PTHREAD_STD # else # define PY_PTHREAD_D7 # endif #elif defined(__DGUX) # define PY_PTHREAD_D6 #elif defined(__hpux) && defined(_DECTHREADS_) # define PY_PTHREAD_D4 #else /* Default case */ # define PY_PTHREAD_STD #endif #ifdef USE_GUSI /* The Macintosh GUSI I/O library sets the stackspace to ** 20KB, much too low. We up it to 64K. */ #define THREAD_STACK_SIZE 0x10000 #endif /* set default attribute object for different versions */ #if defined(PY_PTHREAD_D4) || defined(PY_PTHREAD_D7) # define pthread_attr_default pthread_attr_default # define pthread_mutexattr_default pthread_mutexattr_default # define pthread_condattr_default pthread_condattr_default #elif defined(PY_PTHREAD_STD) || defined(PY_PTHREAD_D6) # define pthread_attr_default ((pthread_attr_t *)NULL) # define pthread_mutexattr_default ((pthread_mutexattr_t *)NULL) # define pthread_condattr_default ((pthread_condattr_t *)NULL) #endif /* On platforms that don't use standard POSIX threads pthread_sigmask() * isn't present. DEC threads uses sigprocmask() instead as do most * other UNIX International compliant systems that don't have the full * pthread implementation. */ #ifdef HAVE_PTHREAD_SIGMASK # define SET_THREAD_SIGMASK pthread_sigmask #else # define SET_THREAD_SIGMASK sigprocmask #endif /* A pthread mutex isn't sufficient to model the Python lock type * because, according to Draft 5 of the docs (P1003.4a/D5), both of the * following are undefined: * -> a thread tries to lock a mutex it already has locked * -> a thread tries to unlock a mutex locked by a different thread * pthread mutexes are designed for serializing threads over short pieces * of code anyway, so wouldn't be an appropriate implementation of * Python's locks regardless. * * The pthread_lock struct implements a Python lock as a "locked?" bit * and a <condition, mutex> pair. In general, if the bit can be acquired * instantly, it is, else the pair is used to block the thread until the * bit is cleared. 9 May 1994 [EMAIL PROTECTED] */ typedef struct { char locked; /* 0=unlocked, 1=locked */ /* a <cond, mutex> pair to handle an acquire of a locked lock */ pthread_cond_t lock_released; pthread_mutex_t mut; } pthread_lock; #define CHECK_STATUS(name) if (status != 0) { perror(name); error = 1; } /* * Initialization. */ #ifdef _HAVE_BSDI static void _noop(void) { } static void PyThread__init_thread(void) { /* DO AN INIT BY STARTING THE THREAD */ static int dummy = 0; // pthread_t thread1; // pthread_create(&thread1, NULL, (void *) _noop, &dummy); // pthread_join(thread1, NULL); } #else /* !_HAVE_BSDI */ static void PyThread__init_thread(void) { #if defined(_AIX) && defined(__GNUC__) pthread_init(); #endif } #endif /* !_HAVE_BSDI */ /* * Thread support. */ long PyThread_start_new_thread(void (*func)(void *), void *arg) { pthread_t th; int success; sigset_t oldmask, newmask; #if defined(THREAD_STACK_SIZE) || defined(PTHREAD_SYSTEM_SCHED_SUPPORTED) pthread_attr_t attrs; #endif dprintf(("PyThread_start_new_thread called\n")); if (!initialized) PyThread_init_thread(); #if defined(THREAD_STACK_SIZE) || defined(PTHREAD_SYSTEM_SCHED_SUPPORTED) pthread_attr_init(&attrs); #endif #ifdef THREAD_STACK_SIZE pthread_attr_setstacksize(&attrs, THREAD_STACK_SIZE); #endif #ifdef PTHREAD_SYSTEM_SCHED_SUPPORTED pthread_attr_setscope(&attrs, PTHREAD_SCOPE_SYSTEM); #endif /* Mask all signals in the current thread before creating the new * thread. This causes the new thread to start with all signals * blocked. */ sigfillset(&newmask); SET_THREAD_SIGMASK(SIG_BLOCK, &newmask, &oldmask); success = pthread_create(&th, #if defined(PY_PTHREAD_D4) pthread_attr_default, (pthread_startroutine_t)func, (pthread_addr_t)arg #elif defined(PY_PTHREAD_D6) pthread_attr_default, (void* (*)(void *))func, arg #elif defined(PY_PTHREAD_D7) pthread_attr_default, func, arg #elif defined(PY_PTHREAD_STD) #if defined(THREAD_STACK_SIZE) || defined(PTHREAD_SYSTEM_SCHED_SUPPORTED) &attrs, #else (pthread_attr_t*)NULL, #endif (void* (*)(void *))func, (void *)arg #endif ); /* Restore signal mask for original thread */ SET_THREAD_SIGMASK(SIG_SETMASK, &oldmask, NULL); #if defined(THREAD_STACK_SIZE) || defined(PTHREAD_SYSTEM_SCHED_SUPPORTED) pthread_attr_destroy(&attrs); #endif if (success == 0) { #if defined(PY_PTHREAD_D4) || defined(PY_PTHREAD_D6) || defined(PY_PTHREAD_D7) pthread_detach(&th); #elif defined(PY_PTHREAD_STD) pthread_detach(th); #endif } #if SIZEOF_PTHREAD_T <= SIZEOF_LONG return (long) th; #else return (long) *(long *) &th; #endif } /* XXX This implementation is considered (to quote Tim Peters) "inherently hosed" because: - It does not guanrantee the promise that a non-zero integer is returned. - The cast to long is inherently unsafe. - It is not clear that the 'volatile' (for AIX?) and ugly casting in the latter return statement (for Alpha OSF/1) are any longer necessary. */ long PyThread_get_thread_ident(void) { volatile pthread_t threadid; if (!initialized) PyThread_init_thread(); /* Jump through some hoops for Alpha OSF/1 */ threadid = pthread_self(); #if SIZEOF_PTHREAD_T <= SIZEOF_LONG return (long) threadid; #else return (long) *(long *) &threadid; #endif } static void do_PyThread_exit_thread(int no_cleanup) { dprintf(("PyThread_exit_thread called\n")); if (!initialized) { if (no_cleanup) _exit(0); else exit(0); } } void PyThread_exit_thread(void) { do_PyThread_exit_thread(0); } void PyThread__exit_thread(void) { do_PyThread_exit_thread(1); } #ifndef NO_EXIT_PROG static void do_PyThread_exit_prog(int status, int no_cleanup) { dprintf(("PyThread_exit_prog(%d) called\n", status)); if (!initialized) if (no_cleanup) _exit(status); else exit(status); } void PyThread_exit_prog(int status) { do_PyThread_exit_prog(status, 0); } void PyThread__exit_prog(int status) { do_PyThread_exit_prog(status, 1); } #endif /* NO_EXIT_PROG */ /* * Lock support. */ PyThread_type_lock PyThread_allocate_lock(void) { pthread_lock *lock; int status, error = 0; dprintf(("PyThread_allocate_lock called\n")); if (!initialized) PyThread_init_thread(); lock = (pthread_lock *) malloc(sizeof(pthread_lock)); memset((void *)lock, '\0', sizeof(pthread_lock)); if (lock) { lock->locked = 0; status = pthread_mutex_init(&lock->mut, pthread_mutexattr_default); CHECK_STATUS("pthread_mutex_init"); status = pthread_cond_init(&lock->lock_released, pthread_condattr_default); CHECK_STATUS("pthread_cond_init"); if (error) { free((void *)lock); lock = 0; } } dprintf(("PyThread_allocate_lock() -> %p\n", lock)); return (PyThread_type_lock) lock; } void PyThread_free_lock(PyThread_type_lock lock) { pthread_lock *thelock = (pthread_lock *)lock; int status, error = 0; dprintf(("PyThread_free_lock(%p) called\n", lock)); status = pthread_mutex_destroy( &thelock->mut ); CHECK_STATUS("pthread_mutex_destroy"); status = pthread_cond_destroy( &thelock->lock_released ); CHECK_STATUS("pthread_cond_destroy"); free((void *)thelock); } int PyThread_acquire_lock(PyThread_type_lock lock, int waitflag) { int success; pthread_lock *thelock = (pthread_lock *)lock; int status, error = 0; dprintf(("PyThread_acquire_lock(%p, %d) called\n", lock, waitflag)); status = pthread_mutex_lock( &thelock->mut ); CHECK_STATUS("pthread_mutex_lock[1]"); success = thelock->locked == 0; if (success) thelock->locked = 1; status = pthread_mutex_unlock( &thelock->mut ); CHECK_STATUS("pthread_mutex_unlock[1]"); if ( !success && waitflag ) { /* continue trying until we get the lock */ /* mut must be locked by me -- part of the condition * protocol */ status = pthread_mutex_lock( &thelock->mut ); CHECK_STATUS("pthread_mutex_lock[2]"); while ( thelock->locked ) { status = pthread_cond_wait(&thelock->lock_released, &thelock->mut); CHECK_STATUS("pthread_cond_wait"); } thelock->locked = 1; status = pthread_mutex_unlock( &thelock->mut ); CHECK_STATUS("pthread_mutex_unlock[2]"); success = 1; } if (error) success = 0; dprintf(("PyThread_acquire_lock(%p, %d) -> %d\n", lock, waitflag, success)); return success; } void PyThread_release_lock(PyThread_type_lock lock) { pthread_lock *thelock = (pthread_lock *)lock; int status, error = 0; dprintf(("PyThread_release_lock(%p) called\n", lock)); status = pthread_mutex_lock( &thelock->mut ); CHECK_STATUS("pthread_mutex_lock[3]"); thelock->locked = 0; status = pthread_mutex_unlock( &thelock->mut ); CHECK_STATUS("pthread_mutex_unlock[3]"); /* wake up someone (anyone, if any) waiting on the lock */ status = pthread_cond_signal( &thelock->lock_released ); CHECK_STATUS("pthread_cond_signal"); } /* * Semaphore support. */ struct semaphore { pthread_mutex_t mutex; pthread_cond_t cond; int value; }; PyThread_type_sema PyThread_allocate_sema(int value) { struct semaphore *sema; int status, error = 0; dprintf(("PyThread_allocate_sema called\n")); if (!initialized) PyThread_init_thread(); sema = (struct semaphore *) malloc(sizeof(struct semaphore)); if (sema != NULL) { sema->value = value; status = pthread_mutex_init(&sema->mutex, pthread_mutexattr_default); CHECK_STATUS("pthread_mutex_init"); status = pthread_cond_init(&sema->cond, pthread_condattr_default); CHECK_STATUS("pthread_cond_init"); if (error) { free((void *) sema); sema = NULL; } } dprintf(("PyThread_allocate_sema() -> %p\n", sema)); return (PyThread_type_sema) sema; } void PyThread_free_sema(PyThread_type_sema sema) { int status, error = 0; struct semaphore *thesema = (struct semaphore *) sema; dprintf(("PyThread_free_sema(%p) called\n", sema)); status = pthread_cond_destroy(&thesema->cond); CHECK_STATUS("pthread_cond_destroy"); status = pthread_mutex_destroy(&thesema->mutex); CHECK_STATUS("pthread_mutex_destroy"); free((void *) thesema); } int PyThread_down_sema(PyThread_type_sema sema, int waitflag) { int status, error = 0, success; struct semaphore *thesema = (struct semaphore *) sema; dprintf(("PyThread_down_sema(%p, %d) called\n", sema, waitflag)); status = pthread_mutex_lock(&thesema->mutex); CHECK_STATUS("pthread_mutex_lock"); if (waitflag) { while (!error && thesema->value <= 0) { status = pthread_cond_wait(&thesema->cond, &thesema->mutex); CHECK_STATUS("pthread_cond_wait"); } } if (error) success = 0; else if (thesema->value > 0) { thesema->value--; success = 1; } else success = 0; status = pthread_mutex_unlock(&thesema->mutex); CHECK_STATUS("pthread_mutex_unlock"); dprintf(("PyThread_down_sema(%p) return\n", sema)); return success; } void PyThread_up_sema(PyThread_type_sema sema) { int status, error = 0; struct semaphore *thesema = (struct semaphore *) sema; dprintf(("PyThread_up_sema(%p)\n", sema)); status = pthread_mutex_lock(&thesema->mutex); CHECK_STATUS("pthread_mutex_lock"); thesema->value++; status = pthread_cond_signal(&thesema->cond); CHECK_STATUS("pthread_cond_signal"); status = pthread_mutex_unlock(&thesema->mutex); CHECK_STATUS("pthread_mutex_unlock"); }