From: David Brownell <[EMAIL PROTECTED]>

This patch updates some of the documentation about DMA buffer management
for USB, and ways to avoid extra copying.  Our understanding of the issues
has improved over time.

 - Most drivers should *avoid* the dma-coherent allocators.  There are
   a few exceptions (like the HID driver).

 - Some methods are currently commented out; it seems folk writing
   USB drivers aren't doing performance tuning at that level yet.

 - Just avoid highmem; there's no good way to pass an "I can do highmem
   DMA" capability through a driver stack.  This is easy, everything
   already avoids highmem.  But it'd be nice if x86_32 systems with much
   physical memory could use it directly with network adapters and mass
   storage devices.  (Patch, anyone?)

Signed-off-by: David Brownell <[EMAIL PROTECTED]>
Signed-off-by: Greg Kroah-Hartman <[EMAIL PROTECTED]>
---
 Documentation/usb/dma.txt |   52 ++++++++++++++++++++++++++++++++-------------
 drivers/usb/core/usb.c    |   11 +++++----
 2 files changed, 43 insertions(+), 20 deletions(-)

diff --git a/Documentation/usb/dma.txt b/Documentation/usb/dma.txt
index 62844ae..e8b50b7 100644
--- a/Documentation/usb/dma.txt
+++ b/Documentation/usb/dma.txt
@@ -32,12 +32,15 @@ ELIMINATING COPIES
 It's good to avoid making CPUs copy data needlessly.  The costs can add up,
 and effects like cache-trashing can impose subtle penalties.
 
-- When you're allocating a buffer for DMA purposes anyway, use the buffer
-  primitives.  Think of them as kmalloc and kfree that give you the right
-  kind of addresses to store in urb->transfer_buffer and urb->transfer_dma,
-  while guaranteeing that no hidden copies through DMA "bounce" buffers will
-  slow things down.  You'd also set URB_NO_TRANSFER_DMA_MAP in
-  urb->transfer_flags:
+- If you're doing lots of small data transfers from the same buffer all
+  the time, that can really burn up resources on systems which use an
+  IOMMU to manage the DMA mappings.  It can cost MUCH more to set up and
+  tear down the IOMMU mappings with each request than perform the I/O!
+
+  For those specific cases, USB has primitives to allocate less expensive
+  memory.  They work like kmalloc and kfree versions that give you the right
+  kind of addresses to store in urb->transfer_buffer and urb->transfer_dma.
+  You'd also set URB_NO_TRANSFER_DMA_MAP in urb->transfer_flags:
 
        void *usb_buffer_alloc (struct usb_device *dev, size_t size,
                int mem_flags, dma_addr_t *dma);
@@ -45,6 +48,10 @@ and effects like cache-trashing can impose subtle penalties.
        void usb_buffer_free (struct usb_device *dev, size_t size,
                void *addr, dma_addr_t dma);
 
+  Most drivers should *NOT* be using these primitives; they don't need
+  to use this type of memory ("dma-coherent"), and memory returned from
+  kmalloc() will work just fine.
+
   For control transfers you can use the buffer primitives or not for each
   of the transfer buffer and setup buffer independently.  Set the flag bits
   URB_NO_TRANSFER_DMA_MAP and URB_NO_SETUP_DMA_MAP to indicate which
@@ -54,29 +61,39 @@ and effects like cache-trashing can impose subtle penalties.
   The memory buffer returned is "dma-coherent"; sometimes you might need to
   force a consistent memory access ordering by using memory barriers.  It's
   not using a streaming DMA mapping, so it's good for small transfers on
-  systems where the I/O would otherwise tie up an IOMMU mapping.  (See
+  systems where the I/O would otherwise thrash an IOMMU mapping.  (See
   Documentation/DMA-mapping.txt for definitions of "coherent" and "streaming"
   DMA mappings.)
 
   Asking for 1/Nth of a page (as well as asking for N pages) is reasonably
   space-efficient.
 
+  On most systems the memory returned will be uncached, because the
+  semantics of dma-coherent memory require either bypassing CPU caches
+  or using cache hardware with bus-snooping support.  While x86 hardware
+  has such bus-snooping, many other systems use software to flush cache
+  lines to prevent DMA conflicts.
+
 - Devices on some EHCI controllers could handle DMA to/from high memory.
-  Driver probe() routines can notice this using a generic DMA call, then
-  tell higher level code (network, scsi, etc) about it like this:
 
-       if (dma_supported (&intf->dev, 0xffffffffffffffffULL))
-               net->features |= NETIF_F_HIGHDMA;
+  Unfortunately, the current Linux DMA infrastructure doesn't have a sane
+  way to expose these capabilities ... and in any case, HIGHMEM is mostly a
+  design wart specific to x86_32.  So your best bet is to ensure you never
+  pass a highmem buffer into a USB driver.  That's easy; it's the default
+  behavior.  Just don't override it; e.g. with NETIF_F_HIGHDMA.
 
-  That can eliminate dma bounce buffering of requests that originate (or
-  terminate) in high memory, in cases where the buffers aren't allocated
-  with usb_buffer_alloc() but instead are dma-mapped.
+  This may force your callers to do some bounce buffering, copying from
+  high memory to "normal" DMA memory.  If you can come up with a good way
+  to fix this issue (for x86_32 machines with over 1 GByte of memory),
+  feel free to submit patches.
 
 
 WORKING WITH EXISTING BUFFERS
 
 Existing buffers aren't usable for DMA without first being mapped into the
-DMA address space of the device.
+DMA address space of the device.  However, most buffers passed to your
+driver can safely be used with such DMA mapping.  (See the first section
+of DMA-mapping.txt, titled "What memory is DMA-able?")
 
 - When you're using scatterlists, you can map everything at once.  On some
   systems, this kicks in an IOMMU and turns the scatterlists into single
@@ -114,3 +131,8 @@ DMA address space of the device.
   The calls manage urb->transfer_dma for you, and set URB_NO_TRANSFER_DMA_MAP
   so that usbcore won't map or unmap the buffer.  The same goes for
   urb->setup_dma and URB_NO_SETUP_DMA_MAP for control requests.
+
+Note that several of those interfaces are currently commented out, since
+they don't have current users.  See the source code.  Other than the dmasync
+calls (where the underlying DMA primitives have changed), most of them can
+easily be commented back in if you want to use them.
diff --git a/drivers/usb/core/usb.c b/drivers/usb/core/usb.c
index c611b3c..0fee5c6 100644
--- a/drivers/usb/core/usb.c
+++ b/drivers/usb/core/usb.c
@@ -579,11 +579,12 @@ int __usb_get_extra_descriptor(char *buffer, unsigned 
size,
  * address (through the pointer provided).
  *
  * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
- * to avoid behaviors like using "DMA bounce buffers", or tying down I/O
- * mapping hardware for long idle periods.  The implementation varies between
+ * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
+ * hardware during URB completion/resubmit.  The implementation varies between
  * platforms, depending on details of how DMA will work to this device.
- * Using these buffers also helps prevent cacheline sharing problems on
- * architectures where CPU caches are not DMA-coherent.
+ * Using these buffers also eliminates cacheline sharing problems on
+ * architectures where CPU caches are not DMA-coherent.  On systems without
+ * bus-snooping caches, these buffers are uncached.
  *
  * When the buffer is no longer used, free it with usb_buffer_free().
  */
@@ -608,7 +609,7 @@ void *usb_buffer_alloc(
  *
  * This reclaims an I/O buffer, letting it be reused.  The memory must have
  * been allocated using usb_buffer_alloc(), and the parameters must match
- * those provided in that allocation request. 
+ * those provided in that allocation request.
  */
 void usb_buffer_free(
        struct usb_device *dev,
-- 
1.5.2.2


-------------------------------------------------------------------------
This SF.net email is sponsored by DB2 Express
Download DB2 Express C - the FREE version of DB2 express and take
control of your XML. No limits. Just data. Click to get it now.
http://sourceforge.net/powerbar/db2/
_______________________________________________
linux-usb-devel@lists.sourceforge.net
To unsubscribe, use the last form field at:
https://lists.sourceforge.net/lists/listinfo/linux-usb-devel

Reply via email to