Signed-off-by: Aneesh Kumar K.V <aneesh.ku...@linux.vnet.ibm.com>
---
 arch/powerpc/mm/pgtable-hash64.c | 341 +++++++++++++++++++++++++++++++++++++++
 arch/powerpc/mm/pgtable_64.c     | 341 ---------------------------------------
 2 files changed, 341 insertions(+), 341 deletions(-)

diff --git a/arch/powerpc/mm/pgtable-hash64.c b/arch/powerpc/mm/pgtable-hash64.c
index 35127acdb8c6..6c9c16b37033 100644
--- a/arch/powerpc/mm/pgtable-hash64.c
+++ b/arch/powerpc/mm/pgtable-hash64.c
@@ -21,6 +21,9 @@
 
 #include "mmu_decl.h"
 
+#define CREATE_TRACE_POINTS
+#include <trace/events/thp.h>
+
 #if H_PGTABLE_RANGE > USER_VSID_RANGE
 #warning Limited user VSID range means pagetable space is wasted
 #endif
@@ -244,3 +247,341 @@ void set_pte_at(struct mm_struct *mm, unsigned long addr, 
pte_t *ptep,
        /* Perform the setting of the PTE */
        __set_pte_at(mm, addr, ptep, pte, 0);
 }
+
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+
+/*
+ * This is called when relaxing access to a hugepage. It's also called in the 
page
+ * fault path when we don't hit any of the major fault cases, ie, a minor
+ * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
+ * handled those two for us, we additionally deal with missing execute
+ * permission here on some processors
+ */
+int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
+                         pmd_t *pmdp, pmd_t entry, int dirty)
+{
+       int changed;
+#ifdef CONFIG_DEBUG_VM
+       WARN_ON(!pmd_trans_huge(*pmdp));
+       assert_spin_locked(&vma->vm_mm->page_table_lock);
+#endif
+       changed = !pmd_same(*(pmdp), entry);
+       if (changed) {
+               __ptep_set_access_flags(pmdp_ptep(pmdp), pmd_pte(entry));
+               /*
+                * Since we are not supporting SW TLB systems, we don't
+                * have any thing similar to flush_tlb_page_nohash()
+                */
+       }
+       return changed;
+}
+
+unsigned long pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
+                                 pmd_t *pmdp, unsigned long clr,
+                                 unsigned long set)
+{
+
+       unsigned long old, tmp;
+
+#ifdef CONFIG_DEBUG_VM
+       WARN_ON(!pmd_trans_huge(*pmdp));
+       assert_spin_locked(&mm->page_table_lock);
+#endif
+
+#ifdef PTE_ATOMIC_UPDATES
+       __asm__ __volatile__(
+       "1:     ldarx   %0,0,%3\n\
+               andi.   %1,%0,%6\n\
+               bne-    1b \n\
+               andc    %1,%0,%4 \n\
+               or      %1,%1,%7\n\
+               stdcx.  %1,0,%3 \n\
+               bne-    1b"
+       : "=&r" (old), "=&r" (tmp), "=m" (*pmdp)
+       : "r" (pmdp), "r" (clr), "m" (*pmdp), "i" (H_PAGE_BUSY), "r" (set)
+       : "cc" );
+#else
+       old = pmd_val(*pmdp);
+       *pmdp = __pmd((old & ~clr) | set);
+#endif
+       trace_hugepage_update(addr, old, clr, set);
+       if (old & H_PAGE_HASHPTE)
+               hpte_do_hugepage_flush(mm, addr, pmdp, old);
+       return old;
+}
+
+pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
+                         pmd_t *pmdp)
+{
+       pmd_t pmd;
+
+       VM_BUG_ON(address & ~HPAGE_PMD_MASK);
+       VM_BUG_ON(pmd_trans_huge(*pmdp));
+
+       pmd = *pmdp;
+       pmd_clear(pmdp);
+       /*
+        * Wait for all pending hash_page to finish. This is needed
+        * in case of subpage collapse. When we collapse normal pages
+        * to hugepage, we first clear the pmd, then invalidate all
+        * the PTE entries. The assumption here is that any low level
+        * page fault will see a none pmd and take the slow path that
+        * will wait on mmap_sem. But we could very well be in a
+        * hash_page with local ptep pointer value. Such a hash page
+        * can result in adding new HPTE entries for normal subpages.
+        * That means we could be modifying the page content as we
+        * copy them to a huge page. So wait for parallel hash_page
+        * to finish before invalidating HPTE entries. We can do this
+        * by sending an IPI to all the cpus and executing a dummy
+        * function there.
+        */
+       kick_all_cpus_sync();
+       /*
+        * Now invalidate the hpte entries in the range
+        * covered by pmd. This make sure we take a
+        * fault and will find the pmd as none, which will
+        * result in a major fault which takes mmap_sem and
+        * hence wait for collapse to complete. Without this
+        * the __collapse_huge_page_copy can result in copying
+        * the old content.
+        */
+       flush_tlb_pmd_range(vma->vm_mm, &pmd, address);
+       return pmd;
+}
+
+int pmdp_test_and_clear_young(struct vm_area_struct *vma,
+                             unsigned long address, pmd_t *pmdp)
+{
+       return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
+}
+
+/*
+ * We currently remove entries from the hashtable regardless of whether
+ * the entry was young or dirty. The generic routines only flush if the
+ * entry was young or dirty which is not good enough.
+ *
+ * We should be more intelligent about this but for the moment we override
+ * these functions and force a tlb flush unconditionally
+ */
+int pmdp_clear_flush_young(struct vm_area_struct *vma,
+                                 unsigned long address, pmd_t *pmdp)
+{
+       return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
+}
+
+/*
+ * We want to put the pgtable in pmd and use pgtable for tracking
+ * the base page size hptes
+ */
+void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
+                               pgtable_t pgtable)
+{
+       pgtable_t *pgtable_slot;
+       assert_spin_locked(&mm->page_table_lock);
+       /*
+        * we store the pgtable in the second half of PMD
+        */
+       pgtable_slot = (pgtable_t *)pmdp + H_PTRS_PER_PMD;
+       *pgtable_slot = pgtable;
+       /*
+        * expose the deposited pgtable to other cpus.
+        * before we set the hugepage PTE at pmd level
+        * hash fault code looks at the deposted pgtable
+        * to store hash index values.
+        */
+       smp_wmb();
+}
+
+pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
+{
+       pgtable_t pgtable;
+       pgtable_t *pgtable_slot;
+
+       assert_spin_locked(&mm->page_table_lock);
+       pgtable_slot = (pgtable_t *)pmdp + H_PTRS_PER_PMD;
+       pgtable = *pgtable_slot;
+       /*
+        * Once we withdraw, mark the entry NULL.
+        */
+       *pgtable_slot = NULL;
+       /*
+        * We store HPTE information in the deposited PTE fragment.
+        * zero out the content on withdraw.
+        */
+       memset(pgtable, 0, H_PTE_FRAG_SIZE);
+       return pgtable;
+}
+
+/*
+ * set a new huge pmd. We should not be called for updating
+ * an existing pmd entry. That should go via pmd_hugepage_update.
+ */
+void set_pmd_at(struct mm_struct *mm, unsigned long addr,
+               pmd_t *pmdp, pmd_t pmd)
+{
+#ifdef CONFIG_DEBUG_VM
+       WARN_ON((pmd_val(*pmdp) & (H_PAGE_PRESENT | H_PAGE_USER)) ==
+               (H_PAGE_PRESENT | H_PAGE_USER));
+       assert_spin_locked(&mm->page_table_lock);
+       WARN_ON(!pmd_trans_huge(pmd));
+#endif
+       trace_hugepage_set_pmd(addr, pmd_val(pmd));
+       return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
+}
+
+void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
+                    pmd_t *pmdp)
+{
+       pmd_hugepage_update(vma->vm_mm, address, pmdp, H_PAGE_PRESENT, 0);
+}
+
+/*
+ * A linux hugepage PMD was changed and the corresponding hash table entries
+ * neesd to be flushed.
+ */
+void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
+                           pmd_t *pmdp, unsigned long old_pmd)
+{
+       int ssize;
+       unsigned int psize;
+       unsigned long vsid;
+       unsigned long flags = 0;
+       const struct cpumask *tmp;
+
+       /* get the base page size,vsid and segment size */
+#ifdef CONFIG_DEBUG_VM
+       psize = get_slice_psize(mm, addr);
+       BUG_ON(psize == MMU_PAGE_16M);
+#endif
+       if (old_pmd & H_PAGE_COMBO)
+               psize = MMU_PAGE_4K;
+       else
+               psize = MMU_PAGE_64K;
+
+       if (!is_kernel_addr(addr)) {
+               ssize = user_segment_size(addr);
+               vsid = get_vsid(mm->context.id, addr, ssize);
+               WARN_ON(vsid == 0);
+       } else {
+               vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
+               ssize = mmu_kernel_ssize;
+       }
+
+       tmp = cpumask_of(smp_processor_id());
+       if (cpumask_equal(mm_cpumask(mm), tmp))
+               flags |= HPTE_LOCAL_UPDATE;
+
+       return flush_hash_hugepage(vsid, addr, pmdp, psize, ssize, flags);
+}
+
+static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
+{
+       return __pmd(pmd_val(pmd) | pgprot_val(pgprot));
+}
+
+pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
+{
+       unsigned long pmdv;
+
+       pmdv = pfn << H_PTE_RPN_SHIFT;
+       return pmd_set_protbits(__pmd(pmdv), pgprot);
+}
+
+pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
+{
+       return pfn_pmd(page_to_pfn(page), pgprot);
+}
+
+pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
+{
+       unsigned long pmdv;
+
+       pmdv = pmd_val(pmd);
+       pmdv &= H_HPAGE_CHG_MASK;
+       return pmd_set_protbits(__pmd(pmdv), newprot);
+}
+
+/*
+ * This is called at the end of handling a user page fault, when the
+ * fault has been handled by updating a HUGE PMD entry in the linux page 
tables.
+ * We use it to preload an HPTE into the hash table corresponding to
+ * the updated linux HUGE PMD entry.
+ */
+void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
+                         pmd_t *pmd)
+{
+       return;
+}
+
+pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
+                             unsigned long addr, pmd_t *pmdp)
+{
+       pmd_t old_pmd;
+       pgtable_t pgtable;
+       unsigned long old;
+       pgtable_t *pgtable_slot;
+
+       old = pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
+       old_pmd = __pmd(old);
+       /*
+        * We have pmd == none and we are holding page_table_lock.
+        * So we can safely go and clear the pgtable hash
+        * index info.
+        */
+       pgtable_slot = (pgtable_t *)pmdp + H_PTRS_PER_PMD;
+       pgtable = *pgtable_slot;
+       /*
+        * Let's zero out old valid and hash index details
+        * hash fault look at them.
+        */
+       memset(pgtable, 0, H_PTE_FRAG_SIZE);
+       /*
+        * Serialize against find_linux_pte_or_hugepte which does lock-less
+        * lookup in page tables with local interrupts disabled. For huge pages
+        * it casts pmd_t to pte_t. Since format of pte_t is different from
+        * pmd_t we want to prevent transit from pmd pointing to page table
+        * to pmd pointing to huge page (and back) while interrupts are 
disabled.
+        * We clear pmd to possibly replace it with page table pointer in
+        * different code paths. So make sure we wait for the parallel
+        * find_linux_pte_or_hugepage to finish.
+        */
+       kick_all_cpus_sync();
+       return old_pmd;
+}
+
+int has_transparent_hugepage(void)
+{
+
+       BUILD_BUG_ON_MSG((H_PMD_SHIFT - PAGE_SHIFT) >= MAX_ORDER,
+               "hugepages can't be allocated by the buddy allocator");
+
+       BUILD_BUG_ON_MSG((H_PMD_SHIFT - PAGE_SHIFT) < 2,
+                        "We need more than 2 pages to do deferred thp split");
+
+       if (!mmu_has_feature(MMU_FTR_16M_PAGE))
+               return 0;
+       /*
+        * We support THP only if PMD_SIZE is 16MB.
+        */
+       if (mmu_psize_defs[MMU_PAGE_16M].shift != H_PMD_SHIFT)
+               return 0;
+       /*
+        * We need to make sure that we support 16MB hugepage in a segement
+        * with base page size 64K or 4K. We only enable THP with a PAGE_SIZE
+        * of 64K.
+        */
+       /*
+        * If we have 64K HPTE, we will be using that by default
+        */
+       if (mmu_psize_defs[MMU_PAGE_64K].shift &&
+           (mmu_psize_defs[MMU_PAGE_64K].penc[MMU_PAGE_16M] == -1))
+               return 0;
+       /*
+        * Ok we only have 4K HPTE
+        */
+       if (mmu_psize_defs[MMU_PAGE_4K].penc[MMU_PAGE_16M] == -1)
+               return 0;
+
+       return 1;
+}
+#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
diff --git a/arch/powerpc/mm/pgtable_64.c b/arch/powerpc/mm/pgtable_64.c
index ff9d388bb311..b642215e51f9 100644
--- a/arch/powerpc/mm/pgtable_64.c
+++ b/arch/powerpc/mm/pgtable_64.c
@@ -55,9 +55,6 @@
 
 #include "mmu_decl.h"
 
-#define CREATE_TRACE_POINTS
-#include <trace/events/thp.h>
-
 #ifdef CONFIG_PPC_STD_MMU_64
 #if TASK_SIZE_USER64 > (1UL << (ESID_BITS + SID_SHIFT))
 #error TASK_SIZE_USER64 exceeds user VSID range
@@ -423,341 +420,3 @@ void pgtable_free_tlb(struct mmu_gather *tlb, void 
*table, int shift)
 }
 #endif
 #endif /* CONFIG_PPC_64K_PAGES */
-
-#ifdef CONFIG_TRANSPARENT_HUGEPAGE
-
-/*
- * This is called when relaxing access to a hugepage. It's also called in the 
page
- * fault path when we don't hit any of the major fault cases, ie, a minor
- * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
- * handled those two for us, we additionally deal with missing execute
- * permission here on some processors
- */
-int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
-                         pmd_t *pmdp, pmd_t entry, int dirty)
-{
-       int changed;
-#ifdef CONFIG_DEBUG_VM
-       WARN_ON(!pmd_trans_huge(*pmdp));
-       assert_spin_locked(&vma->vm_mm->page_table_lock);
-#endif
-       changed = !pmd_same(*(pmdp), entry);
-       if (changed) {
-               __ptep_set_access_flags(pmdp_ptep(pmdp), pmd_pte(entry));
-               /*
-                * Since we are not supporting SW TLB systems, we don't
-                * have any thing similar to flush_tlb_page_nohash()
-                */
-       }
-       return changed;
-}
-
-unsigned long pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
-                                 pmd_t *pmdp, unsigned long clr,
-                                 unsigned long set)
-{
-
-       unsigned long old, tmp;
-
-#ifdef CONFIG_DEBUG_VM
-       WARN_ON(!pmd_trans_huge(*pmdp));
-       assert_spin_locked(&mm->page_table_lock);
-#endif
-
-#ifdef PTE_ATOMIC_UPDATES
-       __asm__ __volatile__(
-       "1:     ldarx   %0,0,%3\n\
-               andi.   %1,%0,%6\n\
-               bne-    1b \n\
-               andc    %1,%0,%4 \n\
-               or      %1,%1,%7\n\
-               stdcx.  %1,0,%3 \n\
-               bne-    1b"
-       : "=&r" (old), "=&r" (tmp), "=m" (*pmdp)
-       : "r" (pmdp), "r" (clr), "m" (*pmdp), "i" (H_PAGE_BUSY), "r" (set)
-       : "cc" );
-#else
-       old = pmd_val(*pmdp);
-       *pmdp = __pmd((old & ~clr) | set);
-#endif
-       trace_hugepage_update(addr, old, clr, set);
-       if (old & H_PAGE_HASHPTE)
-               hpte_do_hugepage_flush(mm, addr, pmdp, old);
-       return old;
-}
-
-pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
-                         pmd_t *pmdp)
-{
-       pmd_t pmd;
-
-       VM_BUG_ON(address & ~HPAGE_PMD_MASK);
-       VM_BUG_ON(pmd_trans_huge(*pmdp));
-
-       pmd = *pmdp;
-       pmd_clear(pmdp);
-       /*
-        * Wait for all pending hash_page to finish. This is needed
-        * in case of subpage collapse. When we collapse normal pages
-        * to hugepage, we first clear the pmd, then invalidate all
-        * the PTE entries. The assumption here is that any low level
-        * page fault will see a none pmd and take the slow path that
-        * will wait on mmap_sem. But we could very well be in a
-        * hash_page with local ptep pointer value. Such a hash page
-        * can result in adding new HPTE entries for normal subpages.
-        * That means we could be modifying the page content as we
-        * copy them to a huge page. So wait for parallel hash_page
-        * to finish before invalidating HPTE entries. We can do this
-        * by sending an IPI to all the cpus and executing a dummy
-        * function there.
-        */
-       kick_all_cpus_sync();
-       /*
-        * Now invalidate the hpte entries in the range
-        * covered by pmd. This make sure we take a
-        * fault and will find the pmd as none, which will
-        * result in a major fault which takes mmap_sem and
-        * hence wait for collapse to complete. Without this
-        * the __collapse_huge_page_copy can result in copying
-        * the old content.
-        */
-       flush_tlb_pmd_range(vma->vm_mm, &pmd, address);
-       return pmd;
-}
-
-int pmdp_test_and_clear_young(struct vm_area_struct *vma,
-                             unsigned long address, pmd_t *pmdp)
-{
-       return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
-}
-
-/*
- * We currently remove entries from the hashtable regardless of whether
- * the entry was young or dirty. The generic routines only flush if the
- * entry was young or dirty which is not good enough.
- *
- * We should be more intelligent about this but for the moment we override
- * these functions and force a tlb flush unconditionally
- */
-int pmdp_clear_flush_young(struct vm_area_struct *vma,
-                                 unsigned long address, pmd_t *pmdp)
-{
-       return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
-}
-
-/*
- * We want to put the pgtable in pmd and use pgtable for tracking
- * the base page size hptes
- */
-void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
-                               pgtable_t pgtable)
-{
-       pgtable_t *pgtable_slot;
-       assert_spin_locked(&mm->page_table_lock);
-       /*
-        * we store the pgtable in the second half of PMD
-        */
-       pgtable_slot = (pgtable_t *)pmdp + H_PTRS_PER_PMD;
-       *pgtable_slot = pgtable;
-       /*
-        * expose the deposited pgtable to other cpus.
-        * before we set the hugepage PTE at pmd level
-        * hash fault code looks at the deposted pgtable
-        * to store hash index values.
-        */
-       smp_wmb();
-}
-
-pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
-{
-       pgtable_t pgtable;
-       pgtable_t *pgtable_slot;
-
-       assert_spin_locked(&mm->page_table_lock);
-       pgtable_slot = (pgtable_t *)pmdp + H_PTRS_PER_PMD;
-       pgtable = *pgtable_slot;
-       /*
-        * Once we withdraw, mark the entry NULL.
-        */
-       *pgtable_slot = NULL;
-       /*
-        * We store HPTE information in the deposited PTE fragment.
-        * zero out the content on withdraw.
-        */
-       memset(pgtable, 0, H_PTE_FRAG_SIZE);
-       return pgtable;
-}
-
-/*
- * set a new huge pmd. We should not be called for updating
- * an existing pmd entry. That should go via pmd_hugepage_update.
- */
-void set_pmd_at(struct mm_struct *mm, unsigned long addr,
-               pmd_t *pmdp, pmd_t pmd)
-{
-#ifdef CONFIG_DEBUG_VM
-       WARN_ON((pmd_val(*pmdp) & (H_PAGE_PRESENT | H_PAGE_USER)) ==
-               (H_PAGE_PRESENT | H_PAGE_USER));
-       assert_spin_locked(&mm->page_table_lock);
-       WARN_ON(!pmd_trans_huge(pmd));
-#endif
-       trace_hugepage_set_pmd(addr, pmd_val(pmd));
-       return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
-}
-
-void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
-                    pmd_t *pmdp)
-{
-       pmd_hugepage_update(vma->vm_mm, address, pmdp, H_PAGE_PRESENT, 0);
-}
-
-/*
- * A linux hugepage PMD was changed and the corresponding hash table entries
- * neesd to be flushed.
- */
-void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
-                           pmd_t *pmdp, unsigned long old_pmd)
-{
-       int ssize;
-       unsigned int psize;
-       unsigned long vsid;
-       unsigned long flags = 0;
-       const struct cpumask *tmp;
-
-       /* get the base page size,vsid and segment size */
-#ifdef CONFIG_DEBUG_VM
-       psize = get_slice_psize(mm, addr);
-       BUG_ON(psize == MMU_PAGE_16M);
-#endif
-       if (old_pmd & H_PAGE_COMBO)
-               psize = MMU_PAGE_4K;
-       else
-               psize = MMU_PAGE_64K;
-
-       if (!is_kernel_addr(addr)) {
-               ssize = user_segment_size(addr);
-               vsid = get_vsid(mm->context.id, addr, ssize);
-               WARN_ON(vsid == 0);
-       } else {
-               vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
-               ssize = mmu_kernel_ssize;
-       }
-
-       tmp = cpumask_of(smp_processor_id());
-       if (cpumask_equal(mm_cpumask(mm), tmp))
-               flags |= HPTE_LOCAL_UPDATE;
-
-       return flush_hash_hugepage(vsid, addr, pmdp, psize, ssize, flags);
-}
-
-static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
-{
-       return __pmd(pmd_val(pmd) | pgprot_val(pgprot));
-}
-
-pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
-{
-       unsigned long pmdv;
-
-       pmdv = pfn << H_PTE_RPN_SHIFT;
-       return pmd_set_protbits(__pmd(pmdv), pgprot);
-}
-
-pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
-{
-       return pfn_pmd(page_to_pfn(page), pgprot);
-}
-
-pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
-{
-       unsigned long pmdv;
-
-       pmdv = pmd_val(pmd);
-       pmdv &= H_HPAGE_CHG_MASK;
-       return pmd_set_protbits(__pmd(pmdv), newprot);
-}
-
-/*
- * This is called at the end of handling a user page fault, when the
- * fault has been handled by updating a HUGE PMD entry in the linux page 
tables.
- * We use it to preload an HPTE into the hash table corresponding to
- * the updated linux HUGE PMD entry.
- */
-void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
-                         pmd_t *pmd)
-{
-       return;
-}
-
-pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
-                             unsigned long addr, pmd_t *pmdp)
-{
-       pmd_t old_pmd;
-       pgtable_t pgtable;
-       unsigned long old;
-       pgtable_t *pgtable_slot;
-
-       old = pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
-       old_pmd = __pmd(old);
-       /*
-        * We have pmd == none and we are holding page_table_lock.
-        * So we can safely go and clear the pgtable hash
-        * index info.
-        */
-       pgtable_slot = (pgtable_t *)pmdp + H_PTRS_PER_PMD;
-       pgtable = *pgtable_slot;
-       /*
-        * Let's zero out old valid and hash index details
-        * hash fault look at them.
-        */
-       memset(pgtable, 0, H_PTE_FRAG_SIZE);
-       /*
-        * Serialize against find_linux_pte_or_hugepte which does lock-less
-        * lookup in page tables with local interrupts disabled. For huge pages
-        * it casts pmd_t to pte_t. Since format of pte_t is different from
-        * pmd_t we want to prevent transit from pmd pointing to page table
-        * to pmd pointing to huge page (and back) while interrupts are 
disabled.
-        * We clear pmd to possibly replace it with page table pointer in
-        * different code paths. So make sure we wait for the parallel
-        * find_linux_pte_or_hugepage to finish.
-        */
-       kick_all_cpus_sync();
-       return old_pmd;
-}
-
-int has_transparent_hugepage(void)
-{
-
-       BUILD_BUG_ON_MSG((H_PMD_SHIFT - PAGE_SHIFT) >= MAX_ORDER,
-               "hugepages can't be allocated by the buddy allocator");
-
-       BUILD_BUG_ON_MSG((H_PMD_SHIFT - PAGE_SHIFT) < 2,
-                        "We need more than 2 pages to do deferred thp split");
-
-       if (!mmu_has_feature(MMU_FTR_16M_PAGE))
-               return 0;
-       /*
-        * We support THP only if PMD_SIZE is 16MB.
-        */
-       if (mmu_psize_defs[MMU_PAGE_16M].shift != H_PMD_SHIFT)
-               return 0;
-       /*
-        * We need to make sure that we support 16MB hugepage in a segement
-        * with base page size 64K or 4K. We only enable THP with a PAGE_SIZE
-        * of 64K.
-        */
-       /*
-        * If we have 64K HPTE, we will be using that by default
-        */
-       if (mmu_psize_defs[MMU_PAGE_64K].shift &&
-           (mmu_psize_defs[MMU_PAGE_64K].penc[MMU_PAGE_16M] == -1))
-               return 0;
-       /*
-        * Ok we only have 4K HPTE
-        */
-       if (mmu_psize_defs[MMU_PAGE_4K].penc[MMU_PAGE_16M] == -1)
-               return 0;
-
-       return 1;
-}
-#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
-- 
2.5.0

_______________________________________________
Linuxppc-dev mailing list
Linuxppc-dev@lists.ozlabs.org
https://lists.ozlabs.org/listinfo/linuxppc-dev

Reply via email to