https://github.com/Hsiangkai updated https://github.com/llvm/llvm-project/pull/96182
>From 374b0d5b83ce080bea690199380e270a36ad1c52 Mon Sep 17 00:00:00 2001 From: Hsiangkai Wang <hsiangkai.w...@arm.com> Date: Mon, 17 Jun 2024 11:49:08 +0100 Subject: [PATCH] [mlir][linalg] Add transform operator for Winograd Conv2D algorithm Add a transform operator structured.winograd_conv2d to convert linalg.conv_2d_nhwc_fhwc to Linalg winograd operators. --- .../Linalg/TransformOps/LinalgTransformOps.td | 51 +++++++++++ .../Dialect/Linalg/Transforms/Transforms.h | 7 ++ .../TransformOps/LinalgTransformOps.cpp | 25 ++++++ .../Linalg/Transforms/WinogradConv2D.cpp | 6 ++ .../Linalg/transform-winograd-conv2d.mlir | 88 +++++++++++++++++++ 5 files changed, 177 insertions(+) create mode 100644 mlir/test/Dialect/Linalg/transform-winograd-conv2d.mlir diff --git a/mlir/include/mlir/Dialect/Linalg/TransformOps/LinalgTransformOps.td b/mlir/include/mlir/Dialect/Linalg/TransformOps/LinalgTransformOps.td index 93e2c2db729da..68d0f713caad4 100644 --- a/mlir/include/mlir/Dialect/Linalg/TransformOps/LinalgTransformOps.td +++ b/mlir/include/mlir/Dialect/Linalg/TransformOps/LinalgTransformOps.td @@ -2587,4 +2587,55 @@ def MapCopyToThreadsOp : }]; } +//===----------------------------------------------------------------------===// +// Winograd Conv2D +//===----------------------------------------------------------------------===// + +def WinogradConv2DOp : Op<Transform_Dialect, + "structured.winograd_conv2d", + [FunctionalStyleTransformOpTrait, MemoryEffectsOpInterface, + TransformOpInterface, TransformEachOpTrait, + ReportTrackingListenerFailuresOpTrait]> { + let description = [{ + Winograd Conv2D algorithm will convert linalg Conv2D operator into batched + matrix multiply. Before the matrix multiply, it will convert filter and + input into a format suitable for batched matrix multiply. After the matrix + multiply, it will convert output to the final result tensor. + + The algorithm F(m x m, r x r) is + + Y = A^T x [(G x g x G^T) @ (B^T x d x B)] x A + + The size of output Y is m x m. The size of filter g is r x r. The size of + input d is (m + r - 1) x (m + r - 1). A^T, A, G^T, G, B^T, and B are + transformation matrices. + + #### Return modes: + + This operation fails if `target` is unsupported. Otherwise, the operation + succeeds and returns a handle of the sequence that replaces the original + convolution. + }]; + + let arguments = (ins TransformHandleTypeInterface:$target, + I64Attr:$m, + I64Attr:$r); + let results = (outs TransformHandleTypeInterface:$transformed); + + let assemblyFormat = + "$target attr-dict `:` functional-type($target, results)"; + + let builders = [ + OpBuilder<(ins "Value":$target)> + ]; + + let extraClassDeclaration = [{ + ::mlir::DiagnosedSilenceableFailure applyToOne( + ::mlir::transform::TransformRewriter &rewriter, + ::mlir::linalg::LinalgOp target, + ::mlir::transform::ApplyToEachResultList &results, + ::mlir::transform::TransformState &state); + }]; +} + #endif // LINALG_TRANSFORM_OPS diff --git a/mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h b/mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h index 835aeaf2ffed3..da107b66257a5 100644 --- a/mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h +++ b/mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h @@ -1312,6 +1312,13 @@ FailureOr<Operation *> transposeBatchMatmul(RewriterBase &rewriter, linalg::BatchMatmulOp op, bool transposeLHS = true); +/// Convert linalg.conv_2d_nhwc_fhwc to Winograd Conv2D algorithm +/// F(m x m, r x r). m is the dimension size of output and r is the dimension +/// size of filter. +FailureOr<Operation *> winogradConv2D(RewriterBase &rewriter, + linalg::Conv2DNhwcFhwcOp op, int64_t m, + int64_t r); + //===----------------------------------------------------------------------===// // Rewrite patterns wrapping transformations. // TODO: every single such pattern should be a close to noop wrapper around a diff --git a/mlir/lib/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp b/mlir/lib/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp index bc02788f9c441..d051b29e1f06f 100644 --- a/mlir/lib/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp +++ b/mlir/lib/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp @@ -3480,6 +3480,31 @@ DiagnosedSilenceableFailure transform::MapCopyToThreadsOp::applyToOne( return DiagnosedSilenceableFailure::success(); } +//===----------------------------------------------------------------------===// +// WinogradConv2DOp +//===----------------------------------------------------------------------===// + +DiagnosedSilenceableFailure transform::WinogradConv2DOp::applyToOne( + transform::TransformRewriter &rewriter, linalg::LinalgOp target, + transform::ApplyToEachResultList &results, + transform::TransformState &state) { + rewriter.setInsertionPoint(target); + auto maybeTransformed = + TypeSwitch<Operation *, FailureOr<Operation *>>(target) + .Case([&](linalg::Conv2DNhwcFhwcOp op) { + return winogradConv2D(rewriter, op, getM(), getR()); + }) + .Default([&](Operation *op) { + return rewriter.notifyMatchFailure(op, "not supported"); + }); + + if (failed(maybeTransformed)) + return emitDefaultSilenceableFailure(target); + + results.push_back(*maybeTransformed); + return DiagnosedSilenceableFailure::success(); +} + #include "mlir/Dialect/Linalg/TransformOps/LinalgTransformOpsEnums.cpp.inc" #define GET_OP_CLASSES diff --git a/mlir/lib/Dialect/Linalg/Transforms/WinogradConv2D.cpp b/mlir/lib/Dialect/Linalg/Transforms/WinogradConv2D.cpp index 86e834d51f2fc..d1f4be8bbf29a 100644 --- a/mlir/lib/Dialect/Linalg/Transforms/WinogradConv2D.cpp +++ b/mlir/lib/Dialect/Linalg/Transforms/WinogradConv2D.cpp @@ -311,6 +311,12 @@ class WinogradConv2DNhwcFhwc final } // end anonymous namespace //===----------------------------------------------------------------------===// +FailureOr<Operation *> winogradConv2D(RewriterBase &rewriter, + linalg::Conv2DNhwcFhwcOp op, int64_t m, + int64_t r) { + return winogradConv2DHelper(rewriter, op, m, r); +} + void populateWinogradConv2DPatterns(RewritePatternSet &patterns, int64_t m, int64_t r) { MLIRContext *context = patterns.getContext(); diff --git a/mlir/test/Dialect/Linalg/transform-winograd-conv2d.mlir b/mlir/test/Dialect/Linalg/transform-winograd-conv2d.mlir new file mode 100644 index 0000000000000..1e74fea5a1c31 --- /dev/null +++ b/mlir/test/Dialect/Linalg/transform-winograd-conv2d.mlir @@ -0,0 +1,88 @@ +// RUN: mlir-opt %s -transform-interpreter -canonicalize --split-input-file | FileCheck %s + +func.func @conv2d(%arg0: tensor<2x10x10x5xf32>, %arg1: tensor<2x3x3x5xf32>, %arg2: tensor<1xf32>) -> tensor<2x8x8x2xf32> { + %0 = tensor.empty() : tensor<2x8x8x2xf32> + %1 = linalg.generic {indexing_maps = [affine_map<(d0, d1, d2, d3) -> (0)>, affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg2 : tensor<1xf32>) outs(%0 : tensor<2x8x8x2xf32>) { + ^bb0(%in: f32, %out: f32): + linalg.yield %in : f32 + } -> tensor<2x8x8x2xf32> + %2 = linalg.conv_2d_nhwc_fhwc {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1 : tensor<2x10x10x5xf32>, tensor<2x3x3x5xf32>) outs(%1 : tensor<2x8x8x2xf32>) -> tensor<2x8x8x2xf32> + return %2 : tensor<2x8x8x2xf32> +} + +module attributes {transform.with_named_sequence} { + transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { + %0 = transform.structured.match ops{["linalg.conv_2d_nhwc_fhwc"]} in %arg1 : (!transform.any_op) -> !transform.any_op + %1 = transform.structured.winograd_conv2d %0 { m = 4, r = 3 } : (!transform.any_op) -> (!transform.any_op) + transform.yield + } +} + +// CHECK: #[[$MAP0:.+]] = affine_map<(d0, d1, d2, d3) -> (0)> +// CHECK: #[[$MAP1:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)> +// CHECK-LABEL: func.func @conv2d +// CHECK-SAME: (%[[ARG0:.*]]: tensor<2x10x10x5xf32>, %[[ARG1:.*]]: tensor<2x3x3x5xf32>, %[[ARG2:.*]]: tensor<1xf32>) -> tensor<2x8x8x2xf32> { +// CHECK: %[[S0:.*]] = tensor.empty() : tensor<2x8x8x2xf32> +// CHECK-NEXT: %[[S1:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%[[ARG2]] : tensor<1xf32>) outs(%[[S0]] : tensor<2x8x8x2xf32>) { +// CHECK-NEXT: ^bb0(%[[IN:.*]]: f32, %[[OUT:.*]]: f32): +// CHECK-NEXT: linalg.yield %[[IN]] : f32 +// CHECK-NEXT: } -> tensor<2x8x8x2xf32> +// CHECK-NEXT: %[[S2:.*]] = tensor.empty() : tensor<2x2x6x6x5x2xf32> +// CHECK-NEXT: %[[S3:.*]] = linalg.winograd_filter_transform m(4) r(3) ins(%[[ARG1]] : tensor<2x3x3x5xf32>) outs(%[[S2]] : tensor<2x2x6x6x5x2xf32>) -> tensor<2x2x6x6x5x2xf32> +// CHECK-NEXT: %[[S4:.*]] = tensor.empty() : tensor<2x2x6x6x2x5xf32> +// CHECK-NEXT: %[[S5:.*]] = linalg.winograd_input_transform m(4) r(3) ins(%[[ARG0]] : tensor<2x10x10x5xf32>) outs(%[[S4]] : tensor<2x2x6x6x2x5xf32>) -> tensor<2x2x6x6x2x5xf32> +// CHECK-NEXT: %[[COLLAPSED:.*]] = tensor.collapse_shape %[[S3]] {{\[}}[0, 1, 2, 3], [4], [5]] : tensor<2x2x6x6x5x2xf32> into tensor<144x5x2xf32> +// CHECK-NEXT: %[[COLLAPSED_0:.*]] = tensor.collapse_shape %[[S5]] {{\[}}[0, 1, 2, 3], [4], [5]] : tensor<2x2x6x6x2x5xf32> into tensor<144x2x5xf32> +// CHECK-NEXT: %[[S6:.*]] = tensor.empty() : tensor<144x2x2xf32> +// CHECK-NEXT: %[[S7:.*]] = linalg.batch_matmul ins(%[[COLLAPSED_0]], %[[COLLAPSED]] : tensor<144x2x5xf32>, tensor<144x5x2xf32>) outs(%[[S6]] : tensor<144x2x2xf32>) -> tensor<144x2x2xf32> +// CHECK-NEXT: %[[EXPANDED:.*]] = tensor.expand_shape %[[S7]] {{\[}}[0, 1, 2, 3], [4], [5]] output_shape [2, 2, 6, 6, 2, 2] : tensor<144x2x2xf32> into tensor<2x2x6x6x2x2xf32> +// CHECK-NEXT: %[[S8:.*]] = linalg.winograd_output_transform m(4) r(3) ins(%[[EXPANDED]] : tensor<2x2x6x6x2x2xf32>) outs(%[[S1]] : tensor<2x8x8x2xf32>) -> tensor<2x8x8x2xf32> +// CHECK-NEXT: return %[[S8]] : tensor<2x8x8x2xf32> +// CHECK-NEXT: } + +// ----- + +func.func @conv2d_unaligned(%arg0: tensor<2x11x11x5xf32>, %arg1: tensor<2x3x3x5xf32>, %arg2: tensor<1xf32>) -> tensor<2x9x9x2xf32> { + %0 = tensor.empty() : tensor<2x9x9x2xf32> + %1 = linalg.generic {indexing_maps = [affine_map<(d0, d1, d2, d3) -> (0)>, affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg2 : tensor<1xf32>) outs(%0 : tensor<2x9x9x2xf32>) { + ^bb0(%in: f32, %out: f32): + linalg.yield %in : f32 + } -> tensor<2x9x9x2xf32> + %2 = linalg.conv_2d_nhwc_fhwc {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1 : tensor<2x11x11x5xf32>, tensor<2x3x3x5xf32>) outs(%1 : tensor<2x9x9x2xf32>) -> tensor<2x9x9x2xf32> + return %2 : tensor<2x9x9x2xf32> +} + +module attributes {transform.with_named_sequence} { + transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { + %0 = transform.structured.match ops{["linalg.conv_2d_nhwc_fhwc"]} in %arg1 : (!transform.any_op) -> !transform.any_op + %1 = transform.structured.winograd_conv2d %0 { m = 4, r = 3 } : (!transform.any_op) -> (!transform.any_op) + transform.yield + } +} + +// CHECK: #[[$MAP0:.+]] = affine_map<(d0, d1, d2, d3) -> (0)> +// CHECK: #[[$MAP1:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)> +// CHECK-LABEL: func.func @conv2d_unaligned +// CHECK-SAME: (%[[ARG0:.*]]: tensor<2x11x11x5xf32>, %[[ARG1:.*]]: tensor<2x3x3x5xf32>, %[[ARG2:.*]]: tensor<1xf32>) -> tensor<2x9x9x2xf32> { +// CHECK: %[[S0:.*]] = tensor.empty() : tensor<2x9x9x2xf32> +// CHECK-NEXT: %[[S1:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%[[ARG2]] : tensor<1xf32>) outs(%[[S0]] : tensor<2x9x9x2xf32>) { +// CHECK-NEXT: ^bb0(%[[IN:.*]]: f32, %[[OUT:.*]]: f32): +// CHECK-NEXT: linalg.yield %[[IN]] : f32 +// CHECK-NEXT: } -> tensor<2x9x9x2xf32> +// CHECK-NEXT: %[[S2:.*]] = tensor.empty() : tensor<3x3x6x6x5x2xf32> +// CHECK-NEXT: %[[S3:.*]] = linalg.winograd_filter_transform m(4) r(3) ins(%[[ARG1]] : tensor<2x3x3x5xf32>) outs(%[[S2]] : tensor<3x3x6x6x5x2xf32>) -> tensor<3x3x6x6x5x2xf32> +// CHECK-NEXT: %[[INPUT_BUF:.*]] = tensor.empty() : tensor<2x14x14x5xf32> +// CHECK-NEXT: %[[INSERTED_SLICE:.*]] = tensor.insert_slice %[[ARG0]] into %[[INPUT_BUF]][0, 0, 0, 0] [2, 11, 11, 5] [1, 1, 1, 1] : tensor<2x11x11x5xf32> into tensor<2x14x14x5xf32> +// CHECK-NEXT: %[[S4:.*]] = tensor.empty() : tensor<3x3x6x6x2x5xf32> +// CHECK-NEXT: %[[S5:.*]] = linalg.winograd_input_transform m(4) r(3) ins(%[[INSERTED_SLICE]] : tensor<2x14x14x5xf32>) outs(%[[S4]] : tensor<3x3x6x6x2x5xf32>) -> tensor<3x3x6x6x2x5xf32> +// CHECK-NEXT: %[[COLLAPSED:.*]] = tensor.collapse_shape %[[S3]] {{\[}}[0, 1, 2, 3], [4], [5]] : tensor<3x3x6x6x5x2xf32> into tensor<324x5x2xf32> +// CHECK-NEXT: %[[COLLAPSED_0:.*]] = tensor.collapse_shape %[[S5]] {{\[}}[0, 1, 2, 3], [4], [5]] : tensor<3x3x6x6x2x5xf32> into tensor<324x2x5xf32> +// CHECK-NEXT: %[[S6:.*]] = tensor.empty() : tensor<324x2x2xf32> +// CHECK-NEXT: %[[S7:.*]] = linalg.batch_matmul ins(%[[COLLAPSED_0]], %[[COLLAPSED]] : tensor<324x2x5xf32>, tensor<324x5x2xf32>) outs(%[[S6]] : tensor<324x2x2xf32>) -> tensor<324x2x2xf32> +// CHECK-NEXT: %[[EXPANDED:.*]] = tensor.expand_shape %[[S7]] {{\[}}[0, 1, 2, 3], [4], [5]] output_shape [3, 3, 6, 6, 2, 2] : tensor<324x2x2xf32> into tensor<3x3x6x6x2x2xf32> +// CHECK-NEXT: %[[OUTPUT_BUF:.*]] = tensor.empty() : tensor<2x12x12x2xf32> +// CHECK-NEXT: %[[INSERTED_SLICE_2:.*]] = tensor.insert_slice %[[S1]] into %[[OUTPUT_BUF]][0, 0, 0, 0] [2, 9, 9, 2] [1, 1, 1, 1] : tensor<2x9x9x2xf32> into tensor<2x12x12x2xf32> +// CHECK-NEXT: %[[S8:.*]] = linalg.winograd_output_transform m(4) r(3) ins(%[[EXPANDED]] : tensor<3x3x6x6x2x2xf32>) outs(%[[INSERTED_SLICE_2]] : tensor<2x12x12x2xf32>) -> tensor<2x12x12x2xf32> +// CHECK-NEXT: %[[EXTRACTED_SLICE:.*]] = tensor.extract_slice %[[S8]][0, 0, 0, 0] [2, 9, 9, 2] [1, 1, 1, 1] : tensor<2x12x12x2xf32> to tensor<2x9x9x2xf32> +// CHECK-NEXT: return %[[EXTRACTED_SLICE]] : tensor<2x9x9x2xf32> +// CHECK-NEXT: } _______________________________________________ llvm-branch-commits mailing list llvm-branch-commits@lists.llvm.org https://lists.llvm.org/cgi-bin/mailman/listinfo/llvm-branch-commits