github-actions[bot] wrote:
<!--LLVM CODE FORMAT COMMENT: {clang-format}-->
:warning: C/C++ code formatter, clang-format found issues in your code.
:warning:
<details>
<summary>
You can test this locally with the following command:
</summary>
``````````bash
git-clang-format --diff origin/main HEAD --extensions h,c --
compiler-rt/lib/builtins/arm/dcmp.h compiler-rt/lib/builtins/arm/thumb1/dcmp.h
compiler-rt/test/builtins/Unit/comparedf2new_test.c --diff_from_common_commit
``````````
:warning:
The reproduction instructions above might return results for more than one PR
in a stack if you are using a stacked PR workflow. You can limit the results by
changing `origin/main` to the base branch/commit you want to compare against.
:warning:
</details>
<details>
<summary>
View the diff from clang-format here.
</summary>
``````````diff
diff --git a/compiler-rt/lib/builtins/arm/dcmp.h
b/compiler-rt/lib/builtins/arm/dcmp.h
index c9fd0ef32..ed790e4f7 100644
--- a/compiler-rt/lib/builtins/arm/dcmp.h
+++ b/compiler-rt/lib/builtins/arm/dcmp.h
@@ -55,156 +55,161 @@
// - if the 11 exponent bits of the output are not all 1, then there are
// definitely no NaNs, so a fast path can handle most non-NaN cases.
- // First diverge control for the negative-numbers case.
- orrs r12, op0h, op1h
- bmi LOCAL_LABEL(negative) // high bit set => at least one
negative input
+// First diverge control for the negative-numbers case.
+orrs r12, op0h,
+ op1h bmi
+ LOCAL_LABEL(negative) // high bit set => at least one negative input
- // Here, both inputs are positive. Try adding 1<<20 to their bitwise OR in
- // r12. This will carry all the way into the top bit, setting the N flag, if
- // all 11 exponent bits were set.
- cmn r12, #1 << 20
- bmi LOCAL_LABEL(NaNInf_check_positive) // need to look harder for NaNs
+// Here, both inputs are positive. Try adding 1<<20 to their bitwise OR in
+// r12. This will carry all the way into the top bit, setting the N flag, if
+// all 11 exponent bits were set.
+cmn r12, #1 << 20 bmi LOCAL_LABEL(
+ NaNInf_check_positive) // need to look harder for NaNs
- // The fastest fast path: both inputs positive and we could easily tell there
- // were no NaNs. So we just compare op0 and op1 as unsigned integers.
- cmp op0h, op1h
- SetReturnRegisterNE
- bxne lr
- cmp op0l, op1l
- SetReturnRegister
- bx lr
+// The fastest fast path: both inputs positive and we could easily tell there
+// were no NaNs. So we just compare op0 and op1 as unsigned integers.
+cmp op0h, op1h SetReturnRegisterNE bxne lr cmp op0l,
+ op1l SetReturnRegister bx lr
-LOCAL_LABEL(NaNInf_check_positive):
- // Second tier for positive numbers. We come here if both inputs are
- // positive, but our fast initial check didn't manage to rule out a NaN. But
- // it's not guaranteed that there _is_ a NaN, for two reasons:
- //
- // 1. An input with exponent 0x7FF might be an infinity instead. Those
- // behave normally under comparison.
- //
- // 2. There might not even _be_ an input with exponent 0x7FF. All we know so
- // far is that the two inputs ORed together had all the exponent bits
- // set. So each of those bits is set in _at least one_ of the inputs, but
- // not necessarily all in the _same_ input.
- //
- // Test each exponent individually for 0x7FF, using the same CMN idiom as
- // above. If neither one carries into the sign bit then we have no NaNs _or_
- // infinities and can compare the registers and return again.
- cmn op0h, #1 << 20
- cmnpl op1h, #1 << 20
- bmi LOCAL_LABEL(NaN_check_positive)
+ LOCAL_LABEL(NaNInf_check_positive)
+ : // Second tier for positive numbers. We come here if both inputs are
+ // positive, but our fast initial check didn't manage to rule out a NaN.
+ // But it's not guaranteed that there _is_ a NaN, for two reasons:
+ //
+ // 1. An input with exponent 0x7FF might be an infinity instead. Those
+ // behave normally under comparison.
+ //
+ // 2. There might not even _be_ an input with exponent 0x7FF. All we
know
+ // so
+ // far is that the two inputs ORed together had all the exponent bits
+ // set. So each of those bits is set in _at least one_ of the inputs,
+ // but not necessarily all in the _same_ input.
+ //
+ // Test each exponent individually for 0x7FF, using the same CMN idiom as
+ // above. If neither one carries into the sign bit then we have no NaNs
+ // _or_ infinities and can compare the registers and return again.
+ cmn op0h, #1 << 20 cmnpl op1h,
+ #1 << 20 bmi LOCAL_LABEL(NaN_check_positive)
- // Second-tier return path, now we've ruled out anything difficult. By this
- // time we know that the two operands have different exponents (because the
- // exponents' bitwise OR is 0x7FF but neither one is 0x7FF by itself, so each
- // must have a set bit not present in the other). So we only need to compare
- // the high words.
- cmp op0h, op1h
- SetReturnRegister
- bx lr
+// Second-tier return path, now we've ruled out anything difficult. By this
+// time we know that the two operands have different exponents (because the
+// exponents' bitwise OR is 0x7FF but neither one is 0x7FF by itself, so each
+// must have a set bit not present in the other). So we only need to compare
+// the high words.
+cmp op0h,
+ op1h SetReturnRegister bx lr
-LOCAL_LABEL(NaN_check_positive):
- // Third tier for positive numbers. Here we know that at least one of the
- // inputs has exponent 0x7FF. But they might still be infinities rather than
- // NaNs. So now we must check whether there's an actual NaN.
- //
- // We do this by shifting the high word of each input left to get rid of the
- // sign bit, shifting a bit in at the bottom which is 1 if any bit is set in
- // the low word. Then we check if the result is _greater_ than 0xFFE00000
- // (but not equal), via adding 0x00200000 to it and testing for the HI
- // condition (carry flag set, but Z clear).
- //
- // We could have skipped the second-tier check and done this more rigorous
- // test immediately. But that would cost an extra instruction in the case
- // where there are no infinities or NaNs, and we assume that that is so much
- // more common that it's worth optimizing for.
- cmp op0l, #1 // set C if op0l is nonzero
- adc op0h, op0h, op0h // shift op0h left, bringing in the C bit
- cmp op1l, #1 // set C if op1l is nonzero
- adc op1h, op1h, op1h // shift op1h left, bringing in the C bit
- cmn op0h, #1 << 21 // if HI, then op0 is a NaN
- cmnls op1h, #1 << 21 // if not HI, then do the same check for op1
- bhi LOCAL_LABEL(NaN) // now, if HI, there's definitely a NaN
+ LOCAL_LABEL(NaN_check_positive)
+ : // Third tier for positive numbers. Here we know that at least one of the
+ // inputs has exponent 0x7FF. But they might still be infinities rather
+ // than NaNs. So now we must check whether there's an actual NaN.
+ //
+ // We do this by shifting the high word of each input left to get rid of
+ // the sign bit, shifting a bit in at the bottom which is 1 if any bit is
+ // set in the low word. Then we check if the result is _greater_ than
+ // 0xFFE00000 (but not equal), via adding 0x00200000 to it and testing
for
+ // the HI condition (carry flag set, but Z clear).
+ //
+ // We could have skipped the second-tier check and done this more
rigorous
+ // test immediately. But that would cost an extra instruction in the case
+ // where there are no infinities or NaNs, and we assume that that is so
+ // much more common that it's worth optimizing for.
+ cmp op0l, #1 // set C if op0l is nonzero
+ adc op0h,
+ op0h, op0h // shift op0h left, bringing in the C bit
+ cmp op1l,
+ #1 // set C if op1l is nonzero
+ adc op1h,
+ op1h, op1h // shift op1h left, bringing in the C bit
+ cmn op0h,
+ #1 << 21 // if HI, then op0 is a NaN
+ cmnls op1h,
+ #1 << 21 // if not HI, then do the same check for op1
+ bhi LOCAL_LABEL(NaN) // now, if HI, there's definitely a NaN
- // Now we've finally ruled out NaNs! And we still know both inputs are
- // positive. So the third-tier return path can just compare the top words
- // again. (The fact that we've just shifted them left doesn't make a
- // difference.)
- cmp op0h, op1h
- SetReturnRegister
- bx lr
+// Now we've finally ruled out NaNs! And we still know both inputs are
+// positive. So the third-tier return path can just compare the top words
+// again. (The fact that we've just shifted them left doesn't make a
+// difference.)
+cmp op0h,
+ op1h SetReturnRegister bx lr
-LOCAL_LABEL(negative):
- // We come here if at least one operand is negative. We haven't checked for
- // NaNs at all yet (the sign check came first), so repeat the first-tier
- // check strategy of seeing if all exponent bits are set in r12.
- //
- // On this path, the sign bit in r12 is set, so if adding 1 to the low
- // exponent bit carries all the way through into the sign bit, it will
- // _clear_ the sign bit rather than setting it. So we expect MI to be the
- // "definitely no NaNs" result, where it was PL on the positive branch.
- cmn r12, #1 << 20
- bpl LOCAL_LABEL(NaNInf_check_negative)
+ LOCAL_LABEL(negative)
+ : // We come here if at least one operand is negative. We haven't checked
+ // for NaNs at all yet (the sign check came first), so repeat the
+ // first-tier check strategy of seeing if all exponent bits are set in
+ // r12.
+ //
+ // On this path, the sign bit in r12 is set, so if adding 1 to the low
+ // exponent bit carries all the way through into the sign bit, it will
+ // _clear_ the sign bit rather than setting it. So we expect MI to be the
+ // "definitely no NaNs" result, where it was PL on the positive branch.
+ cmn r12, #1 << 20 bpl LOCAL_LABEL(NaNInf_check_negative)
- // Now we have no NaNs, but at least one negative number. This gives us two
- // complications:
- //
- // 1. Floating-point numbers are sign/magnitude, not two's complement, so we
- // have to consider separately the cases of "both negative" and "one of
- // each sign".
- //
- // 2. -0 and +0 are required to compare equal.
- //
- // But problem #1 is not as hard as it sounds! If both operands are negative,
- // then we can get the result we want by comparing them as unsigned integers
- // the opposite way round, because the input with the smaller value (as an
- // integer) is the larger number in an FP ordering sense. And if one operand
- // is negative and the other is positive, the _same_ reversed comparison
- // works, because the positive number (with zero sign bit) will always
- // compare less than the negative one in an unsigned-integers sense.
- //
- // So we only have to worry about problem #2, signed zeroes. This only
- // affects the answer if _both_ operands are zero. So we check that by
- // testing all bits of both operands apart from the sign bit.
- orrs r12, op0l, op0h, LSL #1 // EQ if op0 is zero
- orrseq r12, op1l, op1h, LSL #1 // now only EQ if both are zero
- cmpne op1h, op0h // otherwise, compare them backwards
- SetReturnRegisterNE
- bxne lr
- cmp op1l, op0l
- SetReturnRegister
- bx lr
+// Now we have no NaNs, but at least one negative number. This gives us two
+// complications:
+//
+// 1. Floating-point numbers are sign/magnitude, not two's complement, so we
+// have to consider separately the cases of "both negative" and "one of
+// each sign".
+//
+// 2. -0 and +0 are required to compare equal.
+//
+// But problem #1 is not as hard as it sounds! If both operands are negative,
+// then we can get the result we want by comparing them as unsigned integers
+// the opposite way round, because the input with the smaller value (as an
+// integer) is the larger number in an FP ordering sense. And if one operand
+// is negative and the other is positive, the _same_ reversed comparison
+// works, because the positive number (with zero sign bit) will always
+// compare less than the negative one in an unsigned-integers sense.
+//
+// So we only have to worry about problem #2, signed zeroes. This only
+// affects the answer if _both_ operands are zero. So we check that by
+// testing all bits of both operands apart from the sign bit.
+orrs r12, op0l, op0h,
+ LSL #1 // EQ if op0 is zero
+ orrseq r12,
+ op1l, op1h,
+ LSL #1 // now only EQ if both are zero
+ cmpne op1h,
+ op0h // otherwise, compare them backwards
+ SetReturnRegisterNE bxne lr cmp op1l,
+ op0l SetReturnRegister bx lr
-LOCAL_LABEL(NaNInf_check_negative):
- // Second tier for negative numbers: we know the OR of the exponents is 0xFF,
- // but again, we might not have either _actual_ exponent 0xFF, and also, an
- // exponent 0xFF might be an infinity instead of a NaN.
- //
- // On this path we've already branched twice (once for negative numbers and
- // once for the first-tier NaN check), so we'll just go straight to the
- // precise check for NaNs.
- //
- // Like the NaNInf_check_positive case, we do each NaN check by making a
- // word consisting of (high word << 1) OR (1 if low word is nonzero). But
- // unlike the positive case, we can't make those words _in place_,
- // overwriting op0h and op1h themselves, because that would shift the sign
- // bits off the top, and we still need the sign bits to get the comparison
- // right. (In the positive case, we knew both sign bits were 0, enabling a
- // shortcut.)
- cmp op0l, #1 // set C if op0l is nonzero
- adc r12, op0h, op0h // shift op0h left, bringing in the C bit
- cmn r12, #1 << 21 // if HI, then op0 is a NaN
- bhi LOCAL_LABEL(NaN)
- cmp op1l, #1 // set C if op1l is nonzero
- adc r12, op1h, op1h // shift op1h left, bringing in the C bit
- cmn r12, #1 << 21 // if HI, then op1 is a NaN
- bhi LOCAL_LABEL(NaN)
+ LOCAL_LABEL(NaNInf_check_negative)
+ : // Second tier for negative numbers: we know the OR of the exponents is
+ // 0xFF, but again, we might not have either _actual_ exponent 0xFF, and
+ // also, an exponent 0xFF might be an infinity instead of a NaN.
+ //
+ // On this path we've already branched twice (once for negative numbers
+ // and once for the first-tier NaN check), so we'll just go straight to
+ // the precise check for NaNs.
+ //
+ // Like the NaNInf_check_positive case, we do each NaN check by making a
+ // word consisting of (high word << 1) OR (1 if low word is nonzero). But
+ // unlike the positive case, we can't make those words _in place_,
+ // overwriting op0h and op1h themselves, because that would shift the
sign
+ // bits off the top, and we still need the sign bits to get the
comparison
+ // right. (In the positive case, we knew both sign bits were 0, enabling
a
+ // shortcut.)
+ cmp op0l, #1 // set C if op0l is nonzero
+ adc r12,
+ op0h, op0h // shift op0h left, bringing in the C bit
+ cmn r12,
+ #1 << 21 // if HI, then op0 is a NaN
+ bhi LOCAL_LABEL(NaN)
+cmp op1l,
+ #1 // set C if op1l is nonzero
+ adc r12,
+ op1h,
+ op1h // shift op1h left, bringing in the C bit
+ cmn r12,
+ #1 << 21 // if HI, then op1 is a NaN
+ bhi LOCAL_LABEL(NaN)
- // Now we've ruled out NaNs, so we can just compare the two input registers
- // and return. On this path we _don't_ need to check for the special case of
- // comparing two zeroes, because we only came here if the bitwise OR of the
- // exponent fields was 0x7FF, which means the exponents can't both have been
- // zero! So we can _just_ do the reversed CMP and finish.
- cmp op1h, op0h
- SetReturnRegister
- bx lr
+// Now we've ruled out NaNs, so we can just compare the two input registers
+// and return. On this path we _don't_ need to check for the special case of
+// comparing two zeroes, because we only came here if the bitwise OR of the
+// exponent fields was 0x7FF, which means the exponents can't both have been
+// zero! So we can _just_ do the reversed CMP and finish.
+cmp op1h, op0h SetReturnRegister bx lr
diff --git a/compiler-rt/lib/builtins/arm/thumb1/dcmp.h
b/compiler-rt/lib/builtins/arm/thumb1/dcmp.h
index fc45b5d46..2867e94f4 100644
--- a/compiler-rt/lib/builtins/arm/thumb1/dcmp.h
+++ b/compiler-rt/lib/builtins/arm/thumb1/dcmp.h
@@ -49,188 +49,195 @@
// - if the 11 exponent bits of the output are not all 1, then there are
// definitely no NaNs, so a fast path can handle most non-NaN cases.
- push {r4,r5,r6,lr}
-
- // Set up the constant 1 << 20 in a register, which we'll need on all
- // branches.
- movs r5, #1
- lsls r5, r5, #20
-
- // First diverge control for the negative-numbers case.
- movs r4, op0h
- orrs r4, r4, op1h
- bmi LOCAL_LABEL(negative) // high bit set => at least one
negative input
-
- // Here, both inputs are positive. Try adding 1<<20 to their bitwise OR in
- // r4. This will carry all the way into the top bit, setting the N flag, if
- // all 11 exponent bits were set.
- cmn r4, r5
- bmi LOCAL_LABEL(NaNInf_check_positive) // need to look harder for NaNs
-
- // The fastest fast path: both inputs positive and we could easily tell there
- // were no NaNs. So we just compare op0 and op1 as unsigned integers.
- cmp op0h, op1h
- beq LOCAL_LABEL(low_word_positive)
- SetReturnRegister
- pop {r4,r5,r6,pc}
-LOCAL_LABEL(low_word_positive):
- cmp op0l, op1l
- SetReturnRegister
- pop {r4,r5,r6,pc}
-
-LOCAL_LABEL(NaNInf_check_positive):
- // Second tier for positive numbers. We come here if both inputs are
- // positive, but our fast initial check didn't manage to rule out a NaN. But
- // it's not guaranteed that there _is_ a NaN, for two reasons:
- //
- // 1. An input with exponent 0x7FF might be an infinity instead. Those
- // behave normally under comparison.
- //
- // 2. There might not even _be_ an input with exponent 0x7FF. All we know so
- // far is that the two inputs ORed together had all the exponent bits
- // set. So each of those bits is set in _at least one_ of the inputs, but
- // not necessarily all in the _same_ input.
- //
- // Test each exponent individually for 0x7FF, using the same CMN idiom as
- // above. If neither one carries into the sign bit then we have no NaNs _or_
- // infinities and can compare the registers and return again.
- cmn op0h, r5
- bmi LOCAL_LABEL(NaN_check_positive)
- cmn op1h, r5
- bmi LOCAL_LABEL(NaN_check_positive)
-
- // Second-tier return path, now we've ruled out anything difficult. By this
- // time we know that the two operands have different exponents (because the
- // exponents' bitwise OR is 0x7FF but neither one is 0x7FF by itself, so each
- // must have a set bit not present in the other). So we only need to compare
- // the high words.
- cmp op0h, op1h
- SetReturnRegister
- pop {r4,r5,r6,pc}
-
-LOCAL_LABEL(NaN_check_positive):
- // Third tier for positive numbers. Here we know that at least one of the
- // inputs has exponent 0x7FF. But they might still be infinities rather than
- // NaNs. So now we must check whether there's an actual NaN.
- //
- // We do this by shifting the high word of each input left to get rid of the
- // sign bit, shifting a bit in at the bottom which is 1 if any bit is set in
- // the low word. Then we check if the result is _greater_ than 0xFFE00000
- // (but not equal), via adding 0x00200000 to it and testing for the HI
- // condition (carry flag set, but Z clear).
- //
- // We could have skipped the second-tier check and done this more rigorous
- // test immediately. But that would cost an extra instruction in the case
- // where there are no infinities or NaNs, and we assume that that is so much
- // more common that it's worth optimizing for.
- lsls r6, r5, #1 // set r6 = 1<<21
- cmp op0l, #1 // set C if op0l is nonzero
- adcs op0h, op0h, op0h // shift op0h left, bringing in the C bit
- cmn op0h, r6 // if HI, then op0 is a NaN
- bhi LOCAL_LABEL(NaN)
- cmp op1l, #1 // set C if op1l is nonzero
- adcs op1h, op1h, op1h // shift op1h left, bringing in the C bit
- cmn op1h, r6 // if HI, then op1 is a NaN
- bhi LOCAL_LABEL(NaN)
-
- // Now we've finally ruled out NaNs! And we still know both inputs are
- // positive. So the third-tier return path can just compare the top words
- // again. (The fact that we've just shifted them left doesn't make a
- // difference.)
- cmp op0h, op1h
- SetReturnRegister
- pop {r4,r5,r6,pc}
-
-LOCAL_LABEL(negative):
- // We come here if at least one operand is negative. We haven't checked for
- // NaNs at all yet (the sign check came first), so repeat the first-tier
- // check strategy of seeing if all exponent bits are set in r12.
- //
- // On this path, the sign bit in r12 is set, so if adding 1 to the low
- // exponent bit carries all the way through into the sign bit, it will
- // _clear_ the sign bit rather than setting it. So we expect MI to be the
- // "definitely no NaNs" result, where it was PL on the positive branch.
- cmn r4, r5
- bpl LOCAL_LABEL(NaNInf_check_negative)
-
- // Now we have no NaNs, but at least one negative number. This gives us two
- // complications:
- //
- // 1. Floating-point numbers are sign/magnitude, not two's complement, so we
- // have to consider separately the cases of "both negative" and "one of
- // each sign".
- //
- // 2. -0 and +0 are required to compare equal.
- //
- // But problem #1 is not as hard as it sounds! If both operands are negative,
- // then we can get the result we want by comparing them as unsigned integers
- // the opposite way round, because the input with the smaller value (as an
- // integer) is the larger number in an FP ordering sense. And if one operand
- // is negative and the other is positive, the _same_ reversed comparison
- // works, because the positive number (with zero sign bit) will always
- // compare less than the negative one in an unsigned-integers sense.
- //
- // So we only have to worry about problem #2, signed zeroes. This only
- // affects the answer if _both_ operands are zero. So we check that by
- // testing all bits of both operands apart from the sign bit.
- lsls r6, r4, #1 // logical OR of both high words except the signs
- orrs r6, r6, op0l // combine that with the low word of op0
- orrs r6, r6, op1l // and op1, so now only EQ if both are zero
- beq LOCAL_LABEL(equal)
- // Now we've ruled out confusing zero cases, just compare the operands in
- // reverse sense.
- cmp op1h, op0h
- beq LOCAL_LABEL(low_word_negative)
- SetReturnRegister
- pop {r4,r5,r6,pc}
-LOCAL_LABEL(low_word_negative):
- cmp op1l, op0l
- SetReturnRegister
- pop {r4,r5,r6,pc}
-
-LOCAL_LABEL(equal):
- // We come here if we know the inputs are supposed to compare equal. Set up
- // the flags by comparing a register with itself.
- //
- // (We might have come here via a BEQ, in which case we know Z=1, but we also
- // need C=1 for our caller to get _all_ the right flags.)
- cmp r0, r0 // compare a register with itself
- SetReturnRegister
- pop {r4,r5,r6,pc}
-
-LOCAL_LABEL(NaNInf_check_negative):
- // Second tier for negative numbers: we know the OR of the exponents is 0xFF,
- // but again, we might not have either _actual_ exponent 0xFF, and also, an
- // exponent 0xFF might be an infinity instead of a NaN.
- //
- // On this path we've already branched twice (once for negative numbers and
- // once for the first-tier NaN check), so we'll just go straight to the
- // precise check for NaNs.
- //
- // Like the NaNInf_check_positive case, we do each NaN check by making a
- // word consisting of (high word << 1) OR (1 if low word is nonzero). But
- // unlike the positive case, we can't make those words _in place_,
- // overwriting op0h and op1h themselves, because that would shift the sign
- // bits off the top, and we still need the sign bits to get the comparison
- // right. (In the positive case, we knew both sign bits were 0, enabling a
- // shortcut.)
- lsls r6, r5, #1 // set r6 = 1<<21
- movs r4, op0h // copy op0h into a scratch register to modify
- cmp op0l, #1 // set C if op0l is nonzero
- adcs r4, r4, r4 // shift left, bringing in the C bit
- cmn r4, r6 // if HI, then op0 is a NaN
- bhi LOCAL_LABEL(NaN)
- movs r4, op1h // copy op1h into a scratch register to modify
- cmp op1l, #1 // set C if op1l is nonzero
- adcs r4, r4, r4 // shift left, bringing in the C bit
- cmn r4, r6 // if HI, then op1 is a NaN
- bhi LOCAL_LABEL(NaN)
-
- // Now we've ruled out NaNs, so we can just compare the two input registers
- // and return. On this path we _don't_ need to check for the special case of
- // comparing two zeroes, because we only came here if the bitwise OR of the
- // exponent fields was 0x7FF, which means the exponents can't both have been
- // zero! So we can _just_ do the reversed CMP and finish.
- cmp op1h, op0h
- SetReturnRegister
- pop {r4,r5,r6,pc}
+push{r4, r5, r6, lr}
+
+// Set up the constant 1 << 20 in a register, which we'll need on all
+// branches.
+movs r5,
+ #1 lsls r5, r5,
+ #20
+
+ // First diverge control for the negative-numbers case.
+ movs r4,
+ op0h orrs r4, r4,
+ op1h
+ bmi LOCAL_LABEL(negative) // high bit set => at least one negative
input
+
+// Here, both inputs are positive. Try adding 1<<20 to their bitwise OR in
+// r4. This will carry all the way into the top bit, setting the N flag, if
+// all 11 exponent bits were set.
+cmn r4,
+ r5 bmi LOCAL_LABEL(NaNInf_check_positive) // need to look harder for NaNs
+
+// The fastest fast path: both inputs positive and we could easily tell there
+// were no NaNs. So we just compare op0 and op1 as unsigned integers.
+cmp op0h, op1h beq LOCAL_LABEL(low_word_positive)
+SetReturnRegister pop{r4, r5, r6, pc} LOCAL_LABEL(low_word_positive)
+ : cmp op0l, op1l SetReturnRegister pop{r4, r5, r6, pc}
+
+ LOCAL_LABEL(NaNInf_check_positive)
+ : // Second tier for positive numbers. We come here if both inputs are
+ // positive, but our fast initial check didn't manage to rule out a NaN.
+ // But it's not guaranteed that there _is_ a NaN, for two reasons:
+ //
+ // 1. An input with exponent 0x7FF might be an infinity instead. Those
+ // behave normally under comparison.
+ //
+ // 2. There might not even _be_ an input with exponent 0x7FF. All we
know
+ // so
+ // far is that the two inputs ORed together had all the exponent bits
+ // set. So each of those bits is set in _at least one_ of the inputs,
+ // but not necessarily all in the _same_ input.
+ //
+ // Test each exponent individually for 0x7FF, using the same CMN idiom as
+ // above. If neither one carries into the sign bit then we have no NaNs
+ // _or_ infinities and can compare the registers and return again.
+ cmn op0h, r5 bmi LOCAL_LABEL(NaN_check_positive)
+cmn op1h, r5 bmi LOCAL_LABEL(NaN_check_positive)
+
+// Second-tier return path, now we've ruled out anything difficult. By this
+// time we know that the two operands have different exponents (because the
+// exponents' bitwise OR is 0x7FF but neither one is 0x7FF by itself, so each
+// must have a set bit not present in the other). So we only need to compare
+// the high words.
+cmp op0h,
+ op1h SetReturnRegister pop{r4, r5, r6, pc}
+
+LOCAL_LABEL(NaN_check_positive)
+ : // Third tier for positive numbers. Here we know that at least one of the
+ // inputs has exponent 0x7FF. But they might still be infinities rather
+ // than NaNs. So now we must check whether there's an actual NaN.
+ //
+ // We do this by shifting the high word of each input left to get rid of
+ // the sign bit, shifting a bit in at the bottom which is 1 if any bit is
+ // set in the low word. Then we check if the result is _greater_ than
+ // 0xFFE00000 (but not equal), via adding 0x00200000 to it and testing
for
+ // the HI condition (carry flag set, but Z clear).
+ //
+ // We could have skipped the second-tier check and done this more
rigorous
+ // test immediately. But that would cost an extra instruction in the case
+ // where there are no infinities or NaNs, and we assume that that is so
+ // much more common that it's worth optimizing for.
+ lsls r6, r5, #1 // set r6 = 1<<21
+ cmp op0l,
+ #1 // set C if op0l is nonzero
+ adcs op0h,
+ op0h, op0h // shift op0h left, bringing in the C bit
+ cmn op0h,
+ r6 // if HI, then op0 is a NaN
+ bhi LOCAL_LABEL(NaN)
+cmp op1l,
+ #1 // set C if op1l is nonzero
+ adcs op1h,
+ op1h,
+ op1h // shift op1h left, bringing in the C bit
+ cmn op1h,
+ r6 // if HI, then op1 is a NaN
+ bhi LOCAL_LABEL(NaN)
+
+// Now we've finally ruled out NaNs! And we still know both inputs are
+// positive. So the third-tier return path can just compare the top words
+// again. (The fact that we've just shifted them left doesn't make a
+// difference.)
+cmp op0h,
+ op1h SetReturnRegister pop{r4, r5, r6, pc}
+
+LOCAL_LABEL(negative)
+ : // We come here if at least one operand is negative. We haven't checked
+ // for NaNs at all yet (the sign check came first), so repeat the
+ // first-tier check strategy of seeing if all exponent bits are set in
+ // r12.
+ //
+ // On this path, the sign bit in r12 is set, so if adding 1 to the low
+ // exponent bit carries all the way through into the sign bit, it will
+ // _clear_ the sign bit rather than setting it. So we expect MI to be the
+ // "definitely no NaNs" result, where it was PL on the positive branch.
+ cmn r4, r5 bpl LOCAL_LABEL(NaNInf_check_negative)
+
+// Now we have no NaNs, but at least one negative number. This gives us two
+// complications:
+//
+// 1. Floating-point numbers are sign/magnitude, not two's complement, so we
+// have to consider separately the cases of "both negative" and "one of
+// each sign".
+//
+// 2. -0 and +0 are required to compare equal.
+//
+// But problem #1 is not as hard as it sounds! If both operands are negative,
+// then we can get the result we want by comparing them as unsigned integers
+// the opposite way round, because the input with the smaller value (as an
+// integer) is the larger number in an FP ordering sense. And if one operand
+// is negative and the other is positive, the _same_ reversed comparison
+// works, because the positive number (with zero sign bit) will always
+// compare less than the negative one in an unsigned-integers sense.
+//
+// So we only have to worry about problem #2, signed zeroes. This only
+// affects the answer if _both_ operands are zero. So we check that by
+// testing all bits of both operands apart from the sign bit.
+lsls r6, r4,
+ #1 // logical OR of both high words except the signs
+ orrs r6,
+ r6,
+ op0l // combine that with the low word of op0
+ orrs r6,
+ r6,
+ op1l // and op1, so now only EQ if both are zero
+ beq LOCAL_LABEL(equal)
+// Now we've ruled out confusing zero cases, just compare the operands in
+// reverse sense.
+cmp op1h, op0h beq LOCAL_LABEL(low_word_negative)
+SetReturnRegister pop{r4, r5, r6, pc} LOCAL_LABEL(low_word_negative)
+ : cmp op1l, op0l SetReturnRegister pop{r4, r5, r6, pc}
+
+ LOCAL_LABEL(equal)
+ : // We come here if we know the inputs are supposed to compare equal. Set
+ // up the flags by comparing a register with itself.
+ //
+ // (We might have come here via a BEQ, in which case we know Z=1, but we
+ // also need C=1 for our caller to get _all_ the right flags.)
+ cmp r0, r0 // compare a register with itself
+ SetReturnRegister pop{r4, r5, r6, pc}
+
+ LOCAL_LABEL(NaNInf_check_negative)
+ : // Second tier for negative numbers: we know the OR of the exponents is
+ // 0xFF, but again, we might not have either _actual_ exponent 0xFF, and
+ // also, an exponent 0xFF might be an infinity instead of a NaN.
+ //
+ // On this path we've already branched twice (once for negative numbers
+ // and once for the first-tier NaN check), so we'll just go straight to
+ // the precise check for NaNs.
+ //
+ // Like the NaNInf_check_positive case, we do each NaN check by making a
+ // word consisting of (high word << 1) OR (1 if low word is nonzero). But
+ // unlike the positive case, we can't make those words _in place_,
+ // overwriting op0h and op1h themselves, because that would shift the
sign
+ // bits off the top, and we still need the sign bits to get the
comparison
+ // right. (In the positive case, we knew both sign bits were 0, enabling
a
+ // shortcut.)
+ lsls r6, r5, #1 // set r6 = 1<<21
+ movs r4,
+ op0h // copy op0h into a scratch register to modify
+ cmp op0l,
+ #1 // set C if op0l is nonzero
+ adcs r4,
+ r4, r4 // shift left, bringing in the C bit
+ cmn r4,
+ r6 // if HI, then op0 is a NaN
+ bhi LOCAL_LABEL(NaN)
+movs r4,
+ op1h // copy op1h into a scratch register to modify
+ cmp op1l,
+ #1 // set C if op1l is nonzero
+ adcs r4,
+ r4,
+ r4 // shift left, bringing in the C bit
+ cmn r4,
+ r6 // if HI, then op1 is a NaN
+ bhi LOCAL_LABEL(NaN)
+
+// Now we've ruled out NaNs, so we can just compare the two input registers
+// and return. On this path we _don't_ need to check for the special case of
+// comparing two zeroes, because we only came here if the bitwise OR of the
+// exponent fields was 0x7FF, which means the exponents can't both have been
+// zero! So we can _just_ do the reversed CMP and finish.
+cmp op1h, op0h SetReturnRegister pop { r4, r5, r6, pc }
diff --git a/compiler-rt/test/builtins/Unit/comparedf2new_test.c
b/compiler-rt/test/builtins/Unit/comparedf2new_test.c
index f78a1a6aa..8a91f9051 100644
--- a/compiler-rt/test/builtins/Unit/comparedf2new_test.c
+++ b/compiler-rt/test/builtins/Unit/comparedf2new_test.c
@@ -20,21 +20,19 @@ COMPILER_RT_ABI int __ltdf2(double, double);
COMPILER_RT_ABI int __cmpdf2(double, double);
COMPILER_RT_ABI int __unorddf2(double, double);
-enum Result {
- RESULT_LT,
- RESULT_GT,
- RESULT_EQ,
- RESULT_UN
-};
+enum Result { RESULT_LT, RESULT_GT, RESULT_EQ, RESULT_UN };
-int expect(int line, uint64_t a_rep, uint64_t b_rep, const char *name, int
result, int ok, const char *expected) {
+int expect(int line, uint64_t a_rep, uint64_t b_rep, const char *name,
+ int result, int ok, const char *expected) {
if (!ok)
- printf("error at line %d: %s(%016" PRIx64 ", %016" PRIx64 ") = %d,
expected %s\n",
+ printf("error at line %d: %s(%016" PRIx64 ", %016" PRIx64
+ ") = %d, expected %s\n",
line, name, a_rep, b_rep, result, expected);
return !ok;
}
-int test__comparedf2(int line, uint64_t a_rep, uint64_t b_rep, enum Result
result) {
+int test__comparedf2(int line, uint64_t a_rep, uint64_t b_rep,
+ enum Result result) {
double a = fromRep64(a_rep), b = fromRep64(b_rep);
int eq = __eqdf2(a, b);
@@ -94,7 +92,7 @@ int test__comparedf2(int line, uint64_t a_rep, uint64_t
b_rep, enum Result resul
return ret;
}
-#define test__comparedf2(a,b,x) test__comparedf2(__LINE__,a,b,x)
+#define test__comparedf2(a, b, x) test__comparedf2(__LINE__, a, b, x)
int main(void) {
int status = 0;
``````````
</details>
https://github.com/llvm/llvm-project/pull/179924
_______________________________________________
llvm-branch-commits mailing list
[email protected]
https://lists.llvm.org/cgi-bin/mailman/listinfo/llvm-branch-commits