On Wed, Aug 28, 2002 at 09:43:47AM +0100, José Abílio Oliveira Matos wrote:
>   Could you send me the offending file, please. :-)

Sure

Andre'

-- 
Those who desire to give up Freedom in order to gain Security,
will not have, nor do they deserve, either one. (T. Jefferson)
#LyX 1.3 created this file. For more info see http://www.lyx.org/
\lyxformat 220
\textclass slides
\begin_preamble
\def\head#1{{\large{#1}}}
\pagestyle{empty}
\end_preamble
\options fleqn
\language english
\inputencoding auto
\fontscheme default
\graphics default
\paperfontsize default
\spacing single 
\papersize Default
\paperpackage a4
\use_geometry 0
\use_amsmath 1
\use_natbib 0
\use_numerical_citations 0
\paperorientation portrait
\secnumdepth 3
\tocdepth 3
\paragraph_separation skip
\defskip medskip
\quotes_language english
\quotes_times 2
\papercolumns 1
\papersides 1
\paperpagestyle default

\layout Slide

\layout Standard


\begin_inset ERT
status Collapsed

\layout Standard
{
\backslash 
Large 
\end_inset 

Computing graph invariants
\begin_inset ERT
status Collapsed

\layout Standard
}
\end_inset 


\newline 

\layout Standard

>From edge decomposition formulas
\newline 
to composition algorithms
\newline 

\layout Standard


\begin_inset Graphics
        filename g250_500.eps
        lyxscale 70
        display monochrome
        width 100text%

\end_inset 


\layout Standard

André Pönitz
\newline 
Hochschule Mittweida
\layout Slide

\layout Standard


\begin_inset ERT
status Collapsed

\layout Standard

\backslash 
head{
\end_inset 

Edge decomposition formulas
\begin_inset ERT
status Collapsed

\layout Standard
}
\end_inset 


\begin_inset Formula \begin{eqnarray*}
 R(G) & = & a(e)\, R(G_{e})+b(e)\, R(G_{-e})\\
 R(\overline{K_{n}}) & = & r(n)\\
 r(0) & = & 1
\end{eqnarray*}

\end_inset 


\layout Standard

All-terminal reliability:
\begin_inset Formula \begin{eqnarray*}
 R(G) & = & p_{e}\, R(G_{e})+(1-p_{e})\, R(G_{-e})\\
 R(\overline{K_{n}}) & = & 1_{n\leq 1}
\end{eqnarray*}

\end_inset 

Negami polynomial:
\begin_inset Formula \begin{eqnarray*}
 N(G) & = & x\, N(G_{-e})+y\, N(G_{e})\\
 N(\overline{K_{n}}) & = & t^{n}
\end{eqnarray*}

\end_inset 

Chromatic polynomial:
\begin_inset Formula \begin{eqnarray*}
 \chi (G) & = & \chi (G_{-e})-\chi (G_{e})\\
 \chi (\overline{K_{n}}) & = & \lambda^{ n}
\end{eqnarray*}

\end_inset 


\layout Slide

\layout Standard


\begin_inset ERT
status Collapsed

\layout Standard

\backslash 
head{
\end_inset 

Trivial algorithm
\begin_inset ERT
status Collapsed

\layout Standard
}
\end_inset 


\layout Standard

Repeatedly apply decomposition formula
\layout Standard
\align center 

\begin_inset Graphics
        filename tree.eps
        lyxscale 50
        scale 80

\end_inset 


\layout Standard


\begin_inset Formula $ O(2^{|E|})$
\end_inset 

 operations
\layout Slide

\layout Standard


\begin_inset ERT
status Collapsed

\layout Standard

\backslash 
head{
\end_inset 


\begin_inset ERT
status Collapsed

\layout Standard
}
\end_inset 


\layout Standard

Known:
\layout Itemize

polynomial algorithms for 
\newline 
restricted tree-width
\layout Standard

New:
\layout Itemize

composition algorithms are simple 
\layout Itemize

performance not too bad
\layout Itemize

easily constructed
\layout Standard

>From decomposition formula we get
\newline 
a working 
\begin_inset Formula $ O(n\, (m+n)\, (\omega (n)+\log n))$
\end_inset 

 
\newline 
within a few minutes.
\layout Standard

An hour of tweaking can reduce that 
\newline 
by a factor of 
\begin_inset Formula $ n$
\end_inset 

.
\layout Slide

Algorithm (sketch)
\layout Standard


\begin_inset ERT
status Collapsed

\layout Standard

\backslash 
head{
\end_inset 

The Algorithm
\begin_inset ERT
status Collapsed

\layout Standard
}
\end_inset 


\layout Standard

input 
\begin_inset Formula $ G$
\end_inset 

 
\begin_inset Formula $ \ldots $
\end_inset 

 a graph 
\layout Standard

input 
\begin_inset Formula $ T$
\end_inset 

 
\begin_inset Formula $ \ldots $
\end_inset 

 a decomposition formula
\layout Standard

compute composition sequence 
\begin_inset Formula $ S$
\end_inset 

 from 
\begin_inset Formula $ G$
\end_inset 


\layout Standard

determine transfer function 
\begin_inset Formula $ f$
\end_inset 

 from 
\begin_inset Formula $ T$
\end_inset 

 
\layout Standard

set 
\begin_inset Formula $ Z_{0}=\{ z_{0}\} $
\end_inset 


\layout Standard

for 
\begin_inset Formula $ s_{i}\in S$
\end_inset 

 do
\layout Standard


\begin_inset Formula $ \qquad $
\end_inset 

set 
\begin_inset Formula $ Z_{i}:=f(s_{i},Z_{i-1})$
\end_inset 


\layout Standard

output 
\begin_inset Formula $ \textrm{ project}\left(Z_{t}\right)$
\end_inset 


\layout Slide

1
\layout Standard


\begin_inset ERT
status Collapsed

\layout Standard

\backslash 
head{
\end_inset 

Composition Sequences
\begin_inset ERT
status Collapsed

\layout Standard
}
\end_inset 


\layout Standard


\begin_inset Formula $ G=(V,E)$
\end_inset 

 finite, undirected graph
\layout Standard


\begin_inset Formula $ n=|V|$
\end_inset 

, 
\begin_inset Formula $ m=|E|$
\end_inset 

, 
\begin_inset Formula $ t=2\, n+m$
\end_inset 

,
\layout Standard


\begin_inset Formula $ S=(s_{i})_{i=1}^{t},$
\end_inset 

 
\begin_inset Formula $ s_{i}=(x_{i},c_{i})$
\end_inset 

:
\layout Standard


\begin_inset Formula $ \quad\quad\quad x_{i}\in V\cup E,$
\end_inset 

 
\begin_inset Formula $ c_{i}\in\{ A,K,D\} $
\end_inset 

 
\layout Standard


\begin_inset ERT
status Collapsed

\layout Standard
{
\backslash 
arraycolsep3pt
\end_inset 


\begin_inset Formula $ S$
\end_inset 

 is 
\emph on 
composition sequence
\emph default 
 if:
\begin_inset Formula \begin{eqnarray*}
 \forall v & \in  & V\quad\exists v_{A},v_{D}:\\
  &  & 1\leq v_{A}<v_{D}\leq t\:\land\: \\
  &  & \quad s_{v_{A}}=(v,A)\land s_{v_{D}}=(v,D)
\end{eqnarray*}

\end_inset 


\begin_inset Formula \begin{eqnarray*}
 \forall e & = & (uv)\in E\quad\exists u_{A},v_{A},k,u_{D},v_{D}:\\
  &  & 1\leq u_{A},v_{A}<k<u_{D},v_{D}\leq t\: \\
  &  & \quad\land\: s_{v_{A}}=(v,A)\:\land\: s_{u_{A}}=(u,A)\: \\
  &  & \quad\land\: s_{k}=(e,K)\: \\
  &  & \quad\land\: s_{v_{D}}=(v,D)\:\land\: s_{u_{D}}=(u,D)
\end{eqnarray*}

\end_inset 


\layout Standard


\begin_inset ERT
status Collapsed

\layout Standard
}
\end_inset 


\layout Slide

\layout Standard


\begin_inset ERT
status Collapsed

\layout Standard

\backslash 
head{
\end_inset 

Active Node Sets
\begin_inset ERT
status Collapsed

\layout Standard
}
\end_inset 


\layout Standard

sequence 
\begin_inset Formula $ (A_{i})_{i=1}^{t}$
\end_inset 

 
\begin_inset Formula \begin{eqnarray*}
 A_{i} & = & \{ v\in V(G)\:\exists v_{A}\leq i<v_{D}:\\
  &  & \qquad s_{v_{A}}=(v,A)\land s_{v_{D}}=(v,D)\} 
\end{eqnarray*}

\end_inset 

Width
\emph on 
 
\emph default 
of a composition sequence:
\begin_inset Formula \[
 \textrm{wd}(S)=\max_{ i}\;\textrm{card}\: A_{i}\]

\end_inset 


\layout Standard

Known relation:
\begin_inset Formula \[
 \textrm{wd}(S)\geq\textrm{pw}(G)+1\qquad\forall S\in\mathcal{S}(G)\]

\end_inset 


\layout Standard

Inequality is tight.
\layout Slide

\layout Standard


\begin_inset ERT
status Collapsed

\layout Standard

\backslash 
head{
\end_inset 

Edge Decomposition Formulae
\begin_inset ERT
status Collapsed

\layout Standard
}
\end_inset 


\layout Standard

Triplet 
\begin_inset Formula $ T=(a,b,r)$
\end_inset 

, 
\begin_inset Formula $ a,b:E(G)\to\mathcal{W},$
\end_inset 

 
\begin_inset Formula $ r:\mathbb{Z}\mapsto\mathcal{W}$
\end_inset 

 is 
\emph on 
edge decomposition formula for the invariant
\emph default 
 
\begin_inset Formula $ R$
\end_inset 

 if:
\begin_inset Formula \begin{eqnarray*}
 R(G) & = & a(e)\, R(G_{e})+b(e)\, R(G_{-e})\\
 R(\overline{K_{n}}) & = & r(n),\\
 r(0) & = & 1
\end{eqnarray*}

\end_inset 

 
\begin_inset Formula $ \overline{K_{n}}\ldots $
\end_inset 

 edgeless graph on 
\begin_inset Formula $ n$
\end_inset 

 nodes
\layout Slide

\layout Standard


\begin_inset ERT
status Collapsed

\layout Standard

\backslash 
head{
\end_inset 

Indices, values, states
\begin_inset Formula $ \ldots $
\end_inset 


\begin_inset ERT
status Collapsed

\layout Standard
}
\end_inset 


\layout Standard


\begin_inset Formula $ \mathbb{P}(V)\ldots $
\end_inset 

 set partitions of subsets of 
\begin_inset Formula $ V$
\end_inset 


\layout Standard


\begin_inset Formula $ [\pi ,d]:\pi\in\mathbb{\mathbb{P}}(V),d\in\mathbb{Z}\ldots $
\end_inset 

 
\emph on 
index
\layout Standard


\begin_inset Formula $ w\in\mathcal{W}\ldots $
\end_inset 


\emph on 
value
\layout Standard


\begin_inset Formula $ z=([\pi ,d],w)\ldots $
\end_inset 

 
\emph on 
state
\layout Standard

multiset 
\begin_inset Formula $ Z$
\end_inset 

 of states 
\begin_inset Formula $ \ldots $
\end_inset 

 
\emph on 
stateset
\layout Standard


\begin_inset Formula $ Z_{0}=\{ ([\emptyset ,0],0)\}\ldots $
\end_inset 

 
\emph on 
initial stateset
\layout Standard


\begin_inset Formula $ \mathcal{Z}$
\end_inset 

 
\begin_inset Formula $ \ldots $
\end_inset 

 set of all statesets
\newline 

\layout Standard


\begin_inset Formula $ \pi |v\ldots $
\end_inset 

 partition consisting of 
\begin_inset Formula $ \pi $
\end_inset 

 and an additional block containing only 
\begin_inset Formula $ v$
\end_inset 


\layout Standard


\begin_inset Formula $ \pi_{ (uv)}\ldots $
\end_inset 

 
\begin_inset Formula $ \pi $
\end_inset 

 with blocks containing 
\begin_inset Formula $ u$
\end_inset 

 and 
\begin_inset Formula $ v$
\end_inset 

 merged
\layout Standard


\begin_inset Formula $ \pi^{ u}$
\end_inset 

 
\begin_inset Formula $ \ldots $
\end_inset 

 block of 
\begin_inset Formula $ \pi $
\end_inset 

 containing 
\begin_inset Formula $ u$
\end_inset 


\layout Standard


\begin_inset Formula $ \pi -v$
\end_inset 

 
\begin_inset Formula $ \ldots $
\end_inset 

 the partition 
\begin_inset Formula $ \pi $
\end_inset 

 with node 
\begin_inset Formula $ v$
\end_inset 

 removed
\layout Standard

Finally, for an edge 
\layout Standard


\begin_inset Formula $ [\pi ,d]_{(e)}$
\end_inset 


\begin_inset Formula $ \ldots $
\end_inset 


\begin_inset Formula $ e=(uv)$
\end_inset 

 let 
\begin_inset Formula $ [\pi_{ (uv)},d^{'}]$
\end_inset 

 where 
\begin_inset Formula $ d^{'}=d$
\end_inset 

 if 
\begin_inset Formula $ \pi^{ u}=\pi^{ v}$
\end_inset 

 and 
\begin_inset Formula $ d^{'}=d-1$
\end_inset 

 otherwise.
\layout Slide

\layout Standard


\begin_inset ERT
status Collapsed

\layout Standard

\backslash 
head{
\end_inset 

Transfer function
\begin_inset ERT
status Collapsed

\layout Standard
}
\end_inset 


\layout Standard


\begin_inset Formula $ G$
\end_inset 


\begin_inset Formula $ \ldots $
\end_inset 

graph, 
\begin_inset Formula $ T$
\end_inset 


\begin_inset Formula $ \ldots $
\end_inset 

 edge decomposition formula 
\layout Standard


\begin_inset Formula $ f:\mathcal{S}(G)\times\mathcal{Z}\to\mathcal{Z}$
\end_inset 

: 
\begin_inset Formula \begin{align*}
 f((v,A),Z) & =\cup_{ ([\pi ,d],w)\in Z}\left\{ ([\pi |v,d+1],w)\right\} \\
 f((e,K),Z) & =\cup_{ ([\pi ,d],w)\in Z}\\
  & \left\{ ([\pi ,d]_{(e)},a(e)\, w),([\pi ,d],b(e)\, w)\right\} \\
 f((v,D),Z) & =\cup_{ ([\pi ,d],w)\in Z}\left\{ ([\pi -v,d],w)\right\} 
\end{align*}

\end_inset 

for all 
\begin_inset Formula $ Z\in\mathcal{Z}$
\end_inset 

 and
\begin_inset Formula \[
 f\left(s_{t},\ldots f\left(s_{2},f\left(s_{1},Z_{0}\right)\right)\ldots\right 
)=f^{*}=\textrm{const}\]

\end_inset 


\layout Standard

for all comp.
 seqs.
 
\begin_inset Formula $ S=(s_{i})\in\mathcal{S}(G)$
\end_inset 

 of 
\begin_inset Formula $ G$
\end_inset 

.
\layout Slide

Algorithm
\layout Standard


\begin_inset ERT
status Collapsed

\layout Standard

\backslash 
head{
\end_inset 

The Algorithm
\begin_inset ERT
status Collapsed

\layout Standard
}
\end_inset 


\layout Standard


\begin_inset Formula $ \qquad $
\end_inset 

input 
\begin_inset Formula $ G\ldots\textrm{a graph}$
\end_inset 


\layout Standard


\begin_inset Formula $ \qquad $
\end_inset 

input 
\begin_inset Formula $ T\ldots\textrm{a decomposition formula}$
\end_inset 


\layout Standard


\begin_inset Formula $ \qquad $
\end_inset 

compute some c.s.
 
\begin_inset Formula $ S(G)=(s_{i})$
\end_inset 


\layout Standard


\begin_inset Formula $ \qquad $
\end_inset 

set 
\begin_inset Formula $ Z_{0}=\{ ([\emptyset ,0],1)\} $
\end_inset 


\layout Standard


\begin_inset Formula $ \qquad $
\end_inset 

for 
\begin_inset Formula $ i$
\end_inset 

 from 
\begin_inset Formula $ 1$
\end_inset 

 to 
\begin_inset Formula $ t$
\end_inset 

 do
\layout Standard


\begin_inset Formula $ \qquad $
\end_inset 


\begin_inset Formula $ \qquad $
\end_inset 

set 
\begin_inset Formula $ Z_{i}=\textrm{collect}\left(f(s_{i},Z_{i-1})\right)$
\end_inset 


\layout Standard


\begin_inset Formula $ \qquad $
\end_inset 

output 
\begin_inset Formula $ \sum_{ ((\pi ,d),w)\in Z_{t}}r(d)\, w$
\end_inset 


\layout Standard

collection step is crucial for performance 
\layout Slide

\layout Standard


\begin_inset ERT
status Collapsed

\layout Standard

\backslash 
head{
\end_inset 

Correctness of Algorithm
\begin_inset ERT
status Collapsed

\layout Standard
}
\end_inset 


\layout Standard


\begin_inset FormulaMacro 
\newcommand{\GX}{G\textsl{:}X}
\end_inset 

           
\layout Standard

apply decomposition formula repeatedly:
\begin_inset Formula \[
 R(G)=\sum_{ X\subset E}\lyxlock r\left(k(\GX )\right)\, p(X)\]

\end_inset 

 
\begin_inset Formula $ k(\GX )\ldots $
\end_inset 

 # of conn.
 comp.
 of 
\begin_inset Formula $ \GX =(V,X)$
\end_inset 


\layout Standard


\begin_inset Formula $ p_{E}(X)\ldots $
\end_inset 

 
\begin_inset Formula $ \prod_{ e\in X}\lyxlock a(e)\times\prod_{ e\in E\setminus 
X}\lyxlock b(e)$
\end_inset 

 
\layout Standard

define:
\layout Standard


\begin_inset Formula $ \textrm{ind}\lyxlock_{ A}\lyxlock X\, :=\, [A\cap\GX ,k(\GX )]$
\end_inset 

 for 
\begin_inset Formula $ A\subset V$
\end_inset 

, 
\begin_inset Formula $ X\subset E$
\end_inset 


\layout Standard

reorder sum:
\layout Standard


\begin_inset Formula \[
 R(G)=\sum_{ [\pi ,d]}r(d)\sum_{ X\subset E:\textrm{ind}\lyxlock_{ A}\lyxlock X=[\pi 
,d]}\lyxlock p_{E}(X)\]

\end_inset 


\layout Standard


\begin_inset Formula \[
 \textrm{desc}\lyxlock_{ A}\lyxlock (G):=\left\{ \left([\pi ,d],\sum_{ X\subset 
E:\textrm{ind}\lyxlock_{ A}\lyxlock X=[\pi ,d]}\lyxlock p_{E}(X)\right)\right\} \]

\end_inset 


\layout Standard


\begin_inset Formula \[
 R(G)=\sum_{ ([\pi ,d],w)\in\textrm{desc}\lyxlock_{ A}\lyxlock (G)}\lyxlock r(d)\, w\]

\end_inset 


\layout Slide

Lemma
\layout Standard


\begin_inset ERT
status Collapsed

\layout Standard

\backslash 
head{
\end_inset 


\begin_inset ERT
status Collapsed

\layout Standard
}
\end_inset 


\layout Standard


\begin_inset Formula $ G_{i}=(V_{i},E_{i})$
\end_inset 

, 
\begin_inset Formula $ A_{i}\ldots $
\end_inset 

 
\begin_inset Formula $ i^{\textrm{th}}$
\end_inset 

 active node set:
\layout Standard


\series bold 
Lemma:
\series default 
 
\begin_inset Formula $ Z_{i}=\textrm{desc}\lyxlock_{ A_{i}}(G_{i})$
\end_inset 


\layout Standard

proof by induction:
\layout Standard

start clear
\layout Standard

assuming 
\begin_inset Formula $ Z_{i-1}=\textrm{desc}_{A_{i-1}}(G_{i-1})$
\end_inset 


\layout Standard

distinguish three cases 
\begin_inset Formula $ c_{i}\in\{ A,K,D\} $
\end_inset 


\layout Standard

build 
\begin_inset Formula $ Z_{i}$
\end_inset 

 according to algo 
\layout Standard

transform this to 
\begin_inset Formula $ \textrm{desc}_{A_{i}}(G_{i})$
\end_inset 

.
 
\layout Slide

\layout Standard


\begin_inset ERT
status Collapsed

\layout Standard

\backslash 
head{
\end_inset 

Complexity of Algorithm
\begin_inset ERT
status Collapsed

\layout Standard
}
\end_inset 


\layout Standard


\begin_inset Formula $ S\in\mathcal{S}(G)$
\end_inset 

 of width 
\begin_inset Formula $ p$
\end_inset 

,
\layout Standard


\begin_inset Formula $ T=(a,b,r)$
\end_inset 

 decomposition formula 
\layout Standard


\begin_inset Formula $ O(\omega (n))$
\end_inset 

 elementary operation on 
\begin_inset Formula $ \mathcal{W}$
\end_inset 

 
\layout Standard


\begin_inset Formula $ O(n+m)$
\end_inset 

 iterations in the outer loop
\layout Standard


\begin_inset Formula $ B(p)\, (n+1)=O(n)$
\end_inset 

 different indices
\layout Standard


\begin_inset Formula $ O(n)$
\end_inset 

 different states
\layout Standard


\begin_inset Formula $ O(\omega )$
\end_inset 

 for transforming one state
\layout Standard


\begin_inset Formula $ O(n\,\log n)$
\end_inset 

 to sort the stateset 
\layout Standard


\begin_inset Formula $ O(n\,\omega )$
\end_inset 

 to collapse states with identical index 
\layout Standard


\begin_inset Formula $ O((n+m)\, n\, (\log n+\omega ))$
\end_inset 

 total
\layout Standard

with 
\begin_inset Formula $ \omega =O(1)$
\end_inset 

 and 
\begin_inset Formula $ n=O(m)$
\end_inset 

: 
\begin_inset Formula $ O(n^{2}\,\log n)$
\end_inset 

.
\layout Slide

Example Negami
\layout Standard


\begin_inset ERT
status Collapsed

\layout Standard

\backslash 
head{
\end_inset 

Negami polynomial
\begin_inset ERT
status Collapsed

\layout Standard
}
\end_inset 


\begin_inset Formula \begin{eqnarray*}
 N(G) & = & x\, R(G_{e})+y\, R(G_{-e})\\
 N(\overline{K_{n}}) & = & t^{n}
\end{eqnarray*}

\end_inset 


\begin_inset Formula \[
 \begin{array}{crrr}
 p & \#\textrm{total} & \#\textrm{max} & \textrm{time}\\
 6 & 125.898 & 4.770 & 0:05\\
 7 & 790.878 & 22.760 & 1:03\\
 8 & \quad\quad 4.078.059 & \quad 93.252 & \quad 17:04\end{array}
\]

\end_inset 

 manually improved algorithm:
\layout Standard


\begin_inset Formula \[
 \begin{array}{crrr}
 p & \#\textrm{total} & \#\textrm{max} & \textrm{time}\\
 6 & 10.087 & 264 & 0:04\\
 7 & 44.032 & 858 & 0:40\\
 8 & \quad\quad 179.910 & \quad 2.860 & \quad 5:30\end{array}
\]

\end_inset 


\layout Standard

Negami leads to Tutte
\layout Standard

Tutte leads to chromatic polynomial etc.
\layout Slide

\layout Standard


\begin_inset ERT
status Collapsed

\layout Standard

\backslash 
head{
\end_inset 

All-terminal reliability
\begin_inset ERT
status Collapsed

\layout Standard
}
\end_inset 


\begin_inset Formula \begin{eqnarray*}
 R(G) & = & p_{e}\, R(G_{e})+(1-p_{e})\, R(G_{-e})\\
 R(\overline{K_{0}}) & = & R(\overline{K_{1}})\: =\: 1\\
 R(\overline{K_{n}}) & = & 0\quad\textrm{ if }n>1
\end{eqnarray*}

\end_inset 


\begin_inset Formula \[
 \begin{array}{crrrr}
 p & \textrm{\#  total} & \textrm{\#  max} & \textrm{time} & \textrm{result}\\
 9 & 745.202 & 9.724 & 0:03 & 1.58e-5\\
 10 & 3.092.058 & 33.592 & 0:12 & 2.24e-6\\
 11 & 12.734.918 & 117.572 & 0:52 & 2.27e-7\\
 12 & 53.276.048 & 416.024 & 4:22 & 2.85e-8\\
 13 & 218.954.187 & 1.485.800 & 20:36 & 2.46e-9\\
 14 & \quad 917.861.182 & \quad 5.348.880 & \quad 95:50 & \quad 1.97e-10\end{array}
\]

\end_inset 


\layout Standard

manual improvements possible
\layout Standard

approximations possible
\layout Slide

\layout Standard


\begin_inset ERT
status Collapsed

\layout Standard

\backslash 
head{
\end_inset 

Conclusion
\begin_inset ERT
status Collapsed

\layout Standard
}
\end_inset 


\layout Standard

- very easy to implement
\layout Standard

- decent starting point for manual optimization
\newline 
if performance crucial
\layout Standard

- some special graph structures are handled 
\newline 
automatically (e.g.\SpecialChar ~
for planar graphs, only 
\newline 
non-crossing partitions are created)
\layout Standard

- easily generalizable to more complex 
\newline 
decomposition formulae, splitting formulae
\layout Standard


\begin_inset ERT
status Collapsed

\layout Standard

\backslash 
iffalse 
\end_inset 


\layout Standard

Let 
\begin_inset Formula $ G=(V,E)$
\end_inset 

 a graph.
 If we apply 
\begin_inset LatexCommand \ref{eq:decomp}

\end_inset 

 repeatedly, we end up with a sum of the form 
\begin_inset Formula \begin{equation}
 R(G)=\sum_{ X\subset E}\lyxlock r\left(k(G:X)\right)\, 
p(X)\label{eq:fulldecomp}\end{equation}

\end_inset 

with 
\begin_inset Formula $ k(G:X)$
\end_inset 

 denoting the number of connected components of 
\begin_inset Formula $ G:X=(V,X)$
\end_inset 

 and 
\begin_inset Formula $ p_{E}(X)$
\end_inset 

 being some abbreviation for 
\begin_inset Formula $ \prod_{ e\in X}\lyxlock a(e)\times\prod_{ e\in E\setminus 
X}\lyxlock b(e)$
\end_inset 

.
 
\layout Standard

Let us fix some subset 
\begin_inset Formula $ A$
\end_inset 

 of 
\begin_inset Formula $ V$
\end_inset 

.
 We call the index 
\begin_inset Formula $ [\pi ,d]$
\end_inset 

 
\emph on 
induced by
\emph default 
 
\begin_inset Formula $ X$
\end_inset 

 
\emph on 
in
\emph default 
 
\begin_inset Formula $ A$
\end_inset 

 (written as 
\begin_inset Formula $ [\pi ,d]=\textrm{ind}\lyxlock_{ A}\lyxlock X$
\end_inset 

) if there are 
\begin_inset Formula $ d$
\end_inset 

 connected components in 
\begin_inset Formula $ G_{X}\lyxlock $
\end_inset 

 and the blocks of 
\begin_inset Formula $ \pi $
\end_inset 

 correspond to the intersection of 
\begin_inset Formula $ A$
\end_inset 

 with 
\begin_inset Formula $ G_{X}\lyxlock $
\end_inset 

.
 By collecting terms of (
\begin_inset LatexCommand \ref{eq:fulldecomp}

\end_inset 

) into blocks with the same induced index we obtain:
\layout Standard


\begin_inset Formula \begin{equation}
 R(G)=\sum_{ [\pi ,d]}r(d)\sum_{ X\subset E:\textrm{ind}\lyxlock_{ A}\lyxlock X=[\pi 
,d]}\lyxlock p_{E}(X)\label{eq:fulldecomp2}\end{equation}

\end_inset 


\layout Standard

By introducing 
\begin_inset Formula \begin{equation}
 \textrm{desc}\lyxlock_{ A}\lyxlock (G):=\left\{ \left([\pi ,d],\sum_{ X\subset 
E(G):\textrm{ind}\lyxlock_{ A}\lyxlock X=[\pi ,d]}\lyxlock p_{E(G)}(X)\right)\right\} 
\label{eq:desc}\end{equation}

\end_inset 


\layout Standard

(
\begin_inset LatexCommand \ref{eq:fulldecomp2}

\end_inset 

) can be written as:
\begin_inset Formula \[
 R(G)=\sum_{ ([\pi ,d],w)\in\textrm{desc}\lyxlock_{ A}\lyxlock (G)}\lyxlock r(d)\, w\]

\end_inset 


\layout Standard

With 
\begin_inset Formula $ G_{i}=(V_{i},E_{i})$
\end_inset 

 being the subgraph of 
\begin_inset Formula $ G$
\end_inset 

 which consists of all nodes activated and edges handled in the first 
\begin_inset Formula $ i$
\end_inset 

 steps of 
\begin_inset Formula $ S$
\end_inset 

 and 
\begin_inset Formula $ A_{i}$
\end_inset 

 the 
\begin_inset Formula $ i^{\textrm{th}}$
\end_inset 

 active node set we are prepared to state the following lemma: 
\layout Standard


\series bold 
Lemma:
\series default 
 The stateset 
\begin_inset Formula $ Z_{i}$
\end_inset 

 after step 
\begin_inset Formula $ i$
\end_inset 

 equals 
\begin_inset Formula $ \textrm{desc}\lyxlock_{ A_{i}}(G_{i})$
\end_inset 

.
\layout Standard

Proof sketch: We will can show this lemma by induction.
 In the beginning we have 
\begin_inset Formula $ A_{0}=\emptyset $
\end_inset 

 and and empty graph 
\begin_inset Formula $ G_{0}$
\end_inset 

 with zero connected components.
 Consequently there is only a single index 
\begin_inset Formula $ [\emptyset ,0]$
\end_inset 

, and the products in (
\begin_inset LatexCommand \ref{eq:fulldecomp2}

\end_inset 

) both range over empty sets, so their value is 
\begin_inset Formula $ 1$
\end_inset 

.
 This coincides with the initial stateset 
\begin_inset Formula $ Z_{0}\lyxlock =\{ [\emptyset ,0],1\} $
\end_inset 

 as used by the algorithm.
\layout Standard

Case 
\begin_inset Formula $ s_{i}=(v,A)$
\end_inset 

 (activation step of node 
\begin_inset Formula $ v$
\end_inset 

): Let 
\begin_inset Formula $ Z_{i-1}$
\end_inset 

be the state set before step 
\begin_inset Formula $ i$
\end_inset 

 was executed.
 As the algorithm according to (
\begin_inset LatexCommand \ref{eq:fA}

\end_inset 

) transforms a single state 
\begin_inset Formula $ ([\pi ,d],w)$
\end_inset 

 into
\begin_inset Formula $ ([\pi |w,d+1],w)$
\end_inset 

 we have
\layout Standard


\begin_inset Formula \begin{eqnarray*}
 Z_{i}\lyxlock  & = & \left\{ \left([\pi |v,d+1],\sum_{ X\subset 
E_{i-1}:\textrm{ind}\lyxlock_{ A_{i-1}}\lyxlock X=[\pi ,d]}\lyxlock 
p_{E_{i-1}}(X)\right)\right\} 
\end{eqnarray*}

\end_inset 

The freshly activated node 
\begin_inset Formula $ v$
\end_inset 

 forms a new connected component of its own in 
\begin_inset Formula $ G_{i}$
\end_inset 

 as no edge connecting it to any other node in 
\begin_inset Formula $ G_{i}$
\end_inset 

 could have been handled earlier according to restriction (
\begin_inset LatexCommand \ref{eq:restriction2}

\end_inset 

).
 So for 
\begin_inset Formula $ X\subset E_{i-1}(=E_{i})$
\end_inset 

 with 
\begin_inset Formula $ \textrm{ind}\lyxlock_{ A_{i-1}}\lyxlock X=[\pi ,d]$
\end_inset 

, we have 
\begin_inset Formula $ \textrm{ind}\lyxlock_{ A_{i}}\lyxlock X=[\pi |v,d+1]$
\end_inset 

 and vice versa.
 Thus
\begin_inset Formula \begin{eqnarray*}
 Z_{i}\lyxlock  & = & \left\{ \left([\pi |v,d+1],\sum_{ X\subset 
E_{i}:\textrm{ind}\lyxlock_{ A_{i}}\lyxlock X=[\pi |v,d+1]}\lyxlock 
p_{E_{i}}(X)\right)\right\} 
\end{eqnarray*}

\end_inset 


\layout Standard

and by renaming 
\begin_inset Formula $ \pi |v\mapsto\pi $
\end_inset 

 and 
\begin_inset Formula $ d+1\mapsto d$
\end_inset 

 and using (
\begin_inset LatexCommand \ref{eq:desc}

\end_inset 

) we find 
\begin_inset Formula $ Z_{i}=\textrm{desc}\lyxlock_{ A_{i}}(G_{i})$
\end_inset 

.
 The final collection step won't change anything as there are no states
 with the same index in that set.
 
\layout Standard

Case 
\begin_inset Formula $ s_{i}=(e,E)$
\end_inset 

 (edge step of edge 
\begin_inset Formula $ e=(uv)$
\end_inset 

): Again, let 
\begin_inset Formula $ Z_{i-1}$
\end_inset 

be the state set before step 
\begin_inset Formula $ i$
\end_inset 

 was executed.
 
\layout Standard

The algorithm transforms a single state 
\begin_inset Formula $ ([\pi ,d],w)$
\end_inset 

 into a pair of states 
\begin_inset Formula $ ([\pi_{ (uv)},d-1_{\pi^{ u}\neq\pi^{ v}}],a(e)\, w)$
\end_inset 

 and 
\begin_inset Formula $ ([\pi ,d],b(e)\, w)$
\end_inset 

 according to (
\begin_inset LatexCommand \ref{eq:fE}

\end_inset 

) and consequently we have:
\begin_inset Formula \begin{eqnarray*}
 Z_{i}\lyxlock  & = & \left\{ \left([\pi_{ (uv)},d-1_{\pi^{ u}\neq\pi^{ 
v}}],a(e)\cdot\sum_{ X\subset E_{i-1}:\textrm{ind}\lyxlock_{ A_{i-1}}\lyxlock X=[\pi 
,d]}\lyxlock p_{E_{i-1}}(X)\right)\right\} \\
  &  & \bigcup\left \{ \left([\pi ,d],b(e)\cdot\sum_{ X\subset 
E_{i-1}:\textrm{ind}\lyxlock_{ A_{i-1}}\lyxlock X=[\pi ,d]}\lyxlock 
p_{E_{i-1}}(X)\right)\right\} 
\end{eqnarray*}

\end_inset 


\layout Standard

It is easy to see that the following holds:
\layout Standard


\begin_inset Formula \begin{eqnarray}
 b(e)\cdot\!\!\!\!\!\sum_{\substack{  X\subset E_{i-1}:\\
 \textrm{ind}\lyxlock_{ A_{i-1}}\lyxlock X=[\pi ,d]}
}\lyxlock \!\!\!\!\! p_{E_{i-1}}(X) & =\!\!\!\!\!  & \sum_{\substack{  X\subset 
E_{i}:e\notin X\\
 \land\textrm{ind}\lyxlock_{ A_{i}}\lyxlock X=[\pi ,d]}
}\lyxlock \!\!\!\!\! p_{E_{i}}(X)\label{eq:trans1}
\end{eqnarray}

\end_inset 


\layout Standard

Furthermore, if 
\begin_inset Formula $ X\subset E_{i-1}$
\end_inset 

 with 
\begin_inset Formula $ \textrm{ind}\lyxlock_{ A_{i-1}}\lyxlock X=[\pi ,d]$
\end_inset 

, we have 
\begin_inset Formula $ \textrm{ind}\lyxlock_{ A_{i}}\lyxlock X=[\pi ,d]$
\end_inset 

 (since 
\begin_inset Formula $ A_{i-1}=A_{i}$
\end_inset 

), 
\begin_inset Formula $ \textrm{ind}\lyxlock_{ A_{i}}\lyxlock (X\cup\{ e\} )=[\pi_{ 
(uv)},d^{'}]$
\end_inset 

 (with 
\begin_inset Formula $ d^{'}=d-1_{\pi^{ u}\neq\pi^{ v}}$
\end_inset 

) and 
\begin_inset Formula $ a(e)\, P_{E_{i-1}}(X)=P_{E_{i}}(X\cup\{ e\} )$
\end_inset 

.
 So
\begin_inset Formula \begin{eqnarray}
 \left([\pi_{ (uv)},d^{'}],a(e)\cdot\!\!\!\!\!\!\!\sum_{\substack{  X\subset E_{i-1}:\\
 \textrm{ind}\lyxlock_{ A_{i-1}}\lyxlock X=[\pi ,d]}
}\lyxlock \!\!\!\!\!\!\! p_{E_{i-1}}(X)\right) & = & \left([\pi 
,d],\!\!\!\!\!\!\!\sum_{\substack{  X\subset E_{i}:e\in X\\
 \land\textrm{ind}\lyxlock_{ A_{i}}\lyxlock X=[\pi ,d]}
}\lyxlock \!\!\!\!\!\!\! p_{E_{i}}(X)\right)\label{eq:trans2}
\end{eqnarray}

\end_inset 


\layout Standard

holds.
 Using (
\begin_inset LatexCommand \ref{eq:trans1}

\end_inset 

) and (
\begin_inset LatexCommand \ref{eq:trans2}

\end_inset 

) we are done:
\layout Standard


\begin_inset Formula \begin{eqnarray*}
 Z_{i} & = & \left\{ \left([\pi ,d],\sum_{\substack{  X\subset E_{i}:e\in X\\
 \land\textrm{ind}\lyxlock_{ A_{i}}\lyxlock X=[\pi ,d]}
}\lyxlock p_{E_{i}}(X)\right)\right\} \bigcup\left \{ \left([\pi ,d],\sum_{\substack{  
X\subset E_{i}:e\notin X\\
 \land\textrm{ind}\lyxlock_{ A_{i}}\lyxlock X=[\pi ,d]}
}\lyxlock p_{E_{i}}(X)\right)\right\} \\
  & = & \left\{ \left([\pi ,d],\sum_{ X\subset E_{i}:\textrm{ind}\lyxlock_{ 
A_{i}}\lyxlock X=[\pi ,d]}\lyxlock p_{E_{i}}(X)\right)\right\} \, 
=\,\textrm{desc}\lyxlock_{ A_{i}}(G_{i})
\end{eqnarray*}

\end_inset 

Case 
\begin_inset Formula $ s_{i}=(v,D)$
\end_inset 

 (deactivation step of node 
\begin_inset Formula $ v$
\end_inset 

): According to (
\begin_inset LatexCommand \ref{eq:fD}

\end_inset 

) we have
\begin_inset Formula \begin{eqnarray}
 Z_{i}\lyxlock  & = & \left\{ \left([\pi -v,d],\sum_{ X\subset 
E_{i-1}:\textrm{ind}\lyxlock_{ A_{i-1}}\lyxlock X=[\pi ,d]}\lyxlock 
p_{E_{i-1}}(X)\right)\right\} .\label{eq:deact}
\end{eqnarray}

\end_inset 

Given some 
\begin_inset Formula $ X\subset E_{i-1}:\textrm{ind}\lyxlock_{ A_{i-1}}\lyxlock X=[\pi 
,d]$
\end_inset 

 we have 
\begin_inset Formula $ \textrm{ind}\lyxlock_{ A_{i}}\lyxlock X=[\pi -v,d]$
\end_inset 

 since 
\begin_inset Formula $ A_{i}=A_{i-1}\setminus\{ v\} $
\end_inset 

.
 Using 
\begin_inset Formula $ E_{i}=E_{i-1}$
\end_inset 

 we obtain from (
\begin_inset LatexCommand \ref{eq:deact}

\end_inset 

) immediately 
\begin_inset Formula $ Z_{i}=\textrm{desc}_{A_{i}}G_{i}$
\end_inset 

.
\begin_inset ERT
status Collapsed

\layout Standard

\backslash 
fi
\end_inset 


\the_end

Reply via email to