Author: srowen
Date: Wed Mar 10 13:51:28 2010
New Revision: 921351

URL: http://svn.apache.org/viewvc?rev=921351&view=rev
Log:
Update examples to use a little more data for more consistent results

Modified:
    
lucene/mahout/trunk/examples/src/main/java/org/apache/mahout/cf/taste/example/bookcrossing/BookCrossingRecommender.java

Modified: 
lucene/mahout/trunk/examples/src/main/java/org/apache/mahout/cf/taste/example/bookcrossing/BookCrossingRecommender.java
URL: 
http://svn.apache.org/viewvc/lucene/mahout/trunk/examples/src/main/java/org/apache/mahout/cf/taste/example/bookcrossing/BookCrossingRecommender.java?rev=921351&r1=921350&r2=921351&view=diff
==============================================================================
--- 
lucene/mahout/trunk/examples/src/main/java/org/apache/mahout/cf/taste/example/bookcrossing/BookCrossingRecommender.java
 (original)
+++ 
lucene/mahout/trunk/examples/src/main/java/org/apache/mahout/cf/taste/example/bookcrossing/BookCrossingRecommender.java
 Wed Mar 10 13:51:28 2010
@@ -26,7 +26,7 @@ import org.apache.mahout.cf.taste.impl.n
 import org.apache.mahout.cf.taste.impl.recommender.CachingRecommender;
 import org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender;
 import org.apache.mahout.cf.taste.impl.similarity.CachingUserSimilarity;
-import org.apache.mahout.cf.taste.impl.similarity.PearsonCorrelationSimilarity;
+import org.apache.mahout.cf.taste.impl.similarity.EuclideanDistanceSimilarity;
 import org.apache.mahout.cf.taste.model.DataModel;
 import org.apache.mahout.cf.taste.neighborhood.UserNeighborhood;
 import org.apache.mahout.cf.taste.recommender.IDRescorer;
@@ -39,12 +39,12 @@ import org.apache.mahout.cf.taste.simila
  * See the <a href="http://www.informatik.uni-freiburg.de/~cziegler/BX/";>Book 
Crossing site</a>.
  */
 public final class BookCrossingRecommender implements Recommender {
-  
+
   private final Recommender recommender;
-  
+
   public BookCrossingRecommender(DataModel bcModel) throws TasteException {
-    UserSimilarity similarity = new CachingUserSimilarity(new 
PearsonCorrelationSimilarity(bcModel), bcModel);
-    UserNeighborhood neighborhood = new NearestNUserNeighborhood(10, 0.0, 
similarity, bcModel, 0.25);
+    UserSimilarity similarity = new CachingUserSimilarity(new 
EuclideanDistanceSimilarity(bcModel), bcModel);
+    UserNeighborhood neighborhood = new NearestNUserNeighborhood(10, 0.2, 
similarity, bcModel, 0.2);
     recommender = new CachingRecommender(new 
GenericUserBasedRecommender(bcModel, neighborhood, similarity));
   }
   


Reply via email to