Author: srowen Date: Wed Mar 10 13:51:28 2010 New Revision: 921351 URL: http://svn.apache.org/viewvc?rev=921351&view=rev Log: Update examples to use a little more data for more consistent results
Modified: lucene/mahout/trunk/examples/src/main/java/org/apache/mahout/cf/taste/example/bookcrossing/BookCrossingRecommender.java Modified: lucene/mahout/trunk/examples/src/main/java/org/apache/mahout/cf/taste/example/bookcrossing/BookCrossingRecommender.java URL: http://svn.apache.org/viewvc/lucene/mahout/trunk/examples/src/main/java/org/apache/mahout/cf/taste/example/bookcrossing/BookCrossingRecommender.java?rev=921351&r1=921350&r2=921351&view=diff ============================================================================== --- lucene/mahout/trunk/examples/src/main/java/org/apache/mahout/cf/taste/example/bookcrossing/BookCrossingRecommender.java (original) +++ lucene/mahout/trunk/examples/src/main/java/org/apache/mahout/cf/taste/example/bookcrossing/BookCrossingRecommender.java Wed Mar 10 13:51:28 2010 @@ -26,7 +26,7 @@ import org.apache.mahout.cf.taste.impl.n import org.apache.mahout.cf.taste.impl.recommender.CachingRecommender; import org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender; import org.apache.mahout.cf.taste.impl.similarity.CachingUserSimilarity; -import org.apache.mahout.cf.taste.impl.similarity.PearsonCorrelationSimilarity; +import org.apache.mahout.cf.taste.impl.similarity.EuclideanDistanceSimilarity; import org.apache.mahout.cf.taste.model.DataModel; import org.apache.mahout.cf.taste.neighborhood.UserNeighborhood; import org.apache.mahout.cf.taste.recommender.IDRescorer; @@ -39,12 +39,12 @@ import org.apache.mahout.cf.taste.simila * See the <a href="http://www.informatik.uni-freiburg.de/~cziegler/BX/">Book Crossing site</a>. */ public final class BookCrossingRecommender implements Recommender { - + private final Recommender recommender; - + public BookCrossingRecommender(DataModel bcModel) throws TasteException { - UserSimilarity similarity = new CachingUserSimilarity(new PearsonCorrelationSimilarity(bcModel), bcModel); - UserNeighborhood neighborhood = new NearestNUserNeighborhood(10, 0.0, similarity, bcModel, 0.25); + UserSimilarity similarity = new CachingUserSimilarity(new EuclideanDistanceSimilarity(bcModel), bcModel); + UserNeighborhood neighborhood = new NearestNUserNeighborhood(10, 0.2, similarity, bcModel, 0.2); recommender = new CachingRecommender(new GenericUserBasedRecommender(bcModel, neighborhood, similarity)); }