[ 
https://issues.apache.org/jira/browse/MAHOUT-153?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=12801716#action_12801716
 ] 

Pallavi Palleti commented on MAHOUT-153:
----------------------------------------

Hi all,

I am ready with my patch. However, I was trying to see if there is any possible 
optimizations that can be made. I will share the patch and seek further 
optimization suggestions from the group. Should I open another jira issue as 
David might be working on and submit a patch to this jira issue? Kindly suggest.


> Implement kmeans++ for initial cluster selection in kmeans
> ----------------------------------------------------------
>
>                 Key: MAHOUT-153
>                 URL: https://issues.apache.org/jira/browse/MAHOUT-153
>             Project: Mahout
>          Issue Type: New Feature
>          Components: Clustering
>    Affects Versions: 0.2
>         Environment: OS Independent
>            Reporter: Panagiotis Papadimitriou
>             Fix For: 0.3
>
>   Original Estimate: 336h
>  Remaining Estimate: 336h
>
> The current implementation of k-means includes the following algorithms for 
> initial cluster selection (seed selection): 1) random selection of k points, 
> 2) use of canopy clusters.
> I plan to implement k-means++. The details of the algorithm are available 
> here: http://www.stanford.edu/~darthur/kMeansPlusPlus.pdf.
> Design Outline: I will create an abstract class SeedGenerator and a subclass 
> KMeansPlusPlusSeedGenerator. The existing class RandomSeedGenerator will 
> become a subclass of SeedGenerator.

-- 
This message is automatically generated by JIRA.
-
You can reply to this email to add a comment to the issue online.

Reply via email to