[ 
https://issues.apache.org/jira/browse/MAHOUT-305?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=12837192#action_12837192
 ] 

Ankur commented on MAHOUT-305:
------------------------------

Just picking random N % data for each user calculating avg precision and recall 
across all users in test data  and then repeating the test K times to take 
average across all runs should be reasonably fair assessment IMHO.

Mahouters your opinion here would be valuable.

> Combine both cooccurrence-based CF M/R jobs
> -------------------------------------------
>
>                 Key: MAHOUT-305
>                 URL: https://issues.apache.org/jira/browse/MAHOUT-305
>             Project: Mahout
>          Issue Type: Improvement
>          Components: Collaborative Filtering
>    Affects Versions: 0.2
>            Reporter: Sean Owen
>            Assignee: Ankur
>            Priority: Minor
>
> We have two different but essentially identical MapReduce jobs to make 
> recommendations based on item co-occurrence: 
> org.apache.mahout.cf.taste.hadoop.{item,cooccurrence}. They ought to be 
> merged. Not sure exactly how to approach that but noting this in JIRA, per 
> Ankur.

-- 
This message is automatically generated by JIRA.
-
You can reply to this email to add a comment to the issue online.

Reply via email to