sorry, I have one more thing to add, in GenericUserBasedRecommender this is
the method that estimates the preference:
public float estimatePreference(long userID, long itemID) throws
TasteException {
DataModel model = getDataModel();
Float actualPref = model.getPreferenceValue(userID, itemID);
if (actualPref != null) {
return actualPref;
}
long[] theNeighborhood = neighborhood.getUserNeighborhood(userID);
return doEstimatePreference(userID, theNeighborhood, itemID);
}
but I try to estimate from the training set, so obviously the userID and
itemID exsist in the model, therefore it returns the actualPref. that's why
I get 0 as a result.
--
View this message in context:
http://old.nabble.com/evaluating-recommender-systems-tp26421408p26421411.html
Sent from the Mahout User List mailing list archive at Nabble.com.