[ 
https://issues.apache.org/jira/browse/MAPREDUCE-5605?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=13812768#comment-13812768
 ] 

Ming Chen commented on MAPREDUCE-5605:
--------------------------------------

You must specify the child jvm options before running your job, eg:
<property>
   <name>mapred.job.child.java.opts</name>
   <value>-d64 -Xmx8000M -Xms8000M</value>
</property>

> Memory-centric MapReduce aiming to solve the I/O bottleneck
> -----------------------------------------------------------
>
>                 Key: MAPREDUCE-5605
>                 URL: https://issues.apache.org/jira/browse/MAPREDUCE-5605
>             Project: Hadoop Map/Reduce
>          Issue Type: Improvement
>    Affects Versions: 1.0.1
>         Environment: x86-64 Linux/Unix
> 64-bit jdk7 preferred
>            Reporter: Ming Chen
>            Assignee: Ming Chen
>         Attachments: MAPREDUCE-5605-v1.patch
>
>
> Memory is a very important resource to bridge the gap between CPUs and I/O 
> devices. So the idea is to maximize the usage of memory to solve the problem 
> of I/O bottleneck. We developed a multi-threaded task execution engine, which 
> runs in a single JVM on a node. In the execution engine, we have implemented 
> the algorithm of memory scheduling to realize global memory management, based 
> on which we further developed the techniques such as sequential disk 
> accessing, multi-cache and solved the problem of full garbage collection in 
> the JVM. The benchmark results shows that it can get impressive improvement 
> in typical cases. When the a system is relatively short of memory (eg, HPC, 
> small- and medium-size enterprises), the improvement will be even more 
> impressive.



--
This message was sent by Atlassian JIRA
(v6.1#6144)

Reply via email to