[
https://issues.apache.org/jira/browse/MAPREDUCE-7180?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16758408#comment-16758408
]
Jim Brennan commented on MAPREDUCE-7180:
----------------------------------------
[~belugabehr] While this sounds like a good idea, my concern is that this will
allow undersized jobs to continue to silently work, using additional cluster
resources every time they run. In our experience, users often don't fix their
jobs in the presence of failures that succeed on retries, so problems like this
can go on for a long time. I think if we do a feature like this, it should be
an opt-in configuration option.
> Relaunching Failed Containers
> -----------------------------
>
> Key: MAPREDUCE-7180
> URL: https://issues.apache.org/jira/browse/MAPREDUCE-7180
> Project: Hadoop Map/Reduce
> Issue Type: New Feature
> Components: mrv1, mrv2
> Reporter: BELUGA BEHR
> Priority: Major
>
> In my experience, it is very common that a MR job completely fails because a
> single Mapper/Reducer container is using more memory than has been reserved
> in YARN. The following message is logging the the MapReduce
> ApplicationMaster:
> {code}
> Container [pid=46028,containerID=container_e54_1435155934213_16721_01_003666]
> is running beyond physical memory limits.
> Current usage: 1.0 GB of 1 GB physical memory used; 2.7 GB of 2.1 GB virtual
> memory used. Killing container.
> {code}
> In this case, the container is re-launched on another node, and of course, it
> is killed again for the same reason. This process happens three (maybe
> four?) times before the entire MapReduce job fails. It's often said that the
> definition of insanity is doing the same thing over and over and expecting
> different results.
> For all intents and purposes, the amount of resources requested by Mappers
> and Reducers is a fixed amount; based on the default configuration values.
> Users can set the memory on a per-job basis, but it's a pain, not exact, and
> requires intimate knowledge of the MapReduce framework and its memory usage
> patterns.
> I propose that if the MR ApplicationMaster detects that a container is killed
> because of this specific memory resource constraint, that it requests a
> larger container for the subsequent task attempt.
> For example, increase the requested memory size by 50% each time the
> container fails and the task is retried. This will prevent many Job failures
> and allow for additional memory tuning, per-Job, after the fact, to get
> better performance (v.s. fail/succeed).
--
This message was sent by Atlassian JIRA
(v7.6.3#76005)
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]