[ https://issues.apache.org/jira/browse/MAPREDUCE-7185?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=17802806#comment-17802806 ]
Shilun Fan commented on MAPREDUCE-7185: --------------------------------------- Bulk update: moved all 3.4.0 non-blocker issues, please move back if it is a blocker. Retarget 3.5.0. > Parallelize part files move in FileOutputCommitter > -------------------------------------------------- > > Key: MAPREDUCE-7185 > URL: https://issues.apache.org/jira/browse/MAPREDUCE-7185 > Project: Hadoop Map/Reduce > Issue Type: Improvement > Affects Versions: 3.2.0, 2.9.2 > Reporter: Igor Dvorzhak > Assignee: Igor Dvorzhak > Priority: Major > Attachments: MAPREDUCE-7185.patch > > > If map task outputs multiple files it could be slow to move them from temp > directory to output directory in object stores (GCS, S3, etc). > To improve performance we need to parallelize move of more than 1 file in > FileOutputCommitter. > Repro: > Start spark-shell: > {code} > spark-shell --num-executors 2 --executor-memory 10G --executor-cores 4 --conf > spark.dynamicAllocation.maxExecutors=2 > {code} > From spark-shell: > {code} > val df = (1 to 10000).toList.toDF("value").withColumn("p", $"value" % > 10).repartition(50) > df.write.partitionBy("p").mode("overwrite").format("parquet").options(Map("path" > -> s"gs://some/path")).saveAsTable("parquet_partitioned_bench") > {code} > With the fix execution time reduces from 130 seconds to 50 seconds. -- This message was sent by Atlassian Jira (v8.20.10#820010) --------------------------------------------------------------------- To unsubscribe, e-mail: mapreduce-issues-unsubscr...@hadoop.apache.org For additional commands, e-mail: mapreduce-issues-h...@hadoop.apache.org