Oliver, Sorry, missed this.
The historical reason, if I remember right, is that we used to have a single byte buffer and hence the limit. We should definitely remove it now since we don't use a single buffer. Mind opening a jira? http://wiki.apache.org/hadoop/HowToContribute thanks! Arun On Dec 6, 2012, at 8:01 AM, Olivier Varene - echo wrote: > anyone ? > > Début du message réexpédié : > >> De : Olivier Varene - echo <var...@echo.fr> >> Objet : ReduceTask > ShuffleRamManager : Java Heap memory error >> Date : 4 décembre 2012 09:34:06 HNEC >> À : mapreduce-user@hadoop.apache.org >> Répondre à : mapreduce-user@hadoop.apache.org >> >> >> Hi to all, >> first many thanks for the quality of the work you are doing : thanks a lot >> >> I am facing a bug with the memory management at shuffle time, I regularly get >> >> Map output copy failure : java.lang.OutOfMemoryError: Java heap space >> at >> org.apache.hadoop.mapred.ReduceTask$ReduceCopier$MapOutputCopier.shuffleInMemory(ReduceTask.java:1612) >> >> >> reading the code in org.apache.hadoop.mapred.ReduceTask.java file >> >> the "ShuffleRamManager" is limiting the maximum of RAM allocation to >> Integer.MAX_VALUE * maxInMemCopyUse ? >> >> maxSize = (int)(conf.getInt("mapred.job.reduce.total.mem.bytes", >> (int)Math.min(Runtime.getRuntime().maxMemory(), >> Integer.MAX_VALUE)) >> * maxInMemCopyUse); >> >> Why is is so ? >> And why is it concatened to an Integer as its raw type is long ? >> >> Does it mean that you can not have a Reduce Task taking advantage of more >> than 2Gb of memory ? >> >> To explain a little bit my use case, >> I am processing some 2700 maps (each working on 128 MB block of data), and >> when the reduce phase starts, it sometimes stumbles with java heap memory >> issues. >> >> configuration is : java 1.6.0-27 >> hadoop 0.20.2 >> -Xmx1400m >> io.sort.mb 400 >> io.sort.factor 25 >> io.sort.spill.percent 0.80 >> mapred.job.shuffle.input.buffer.percent 0.70 >> ShuffleRamManager: MemoryLimit=913466944, MaxSingleShuffleLimit=228366736 >> >> I will decrease >> mapred.job.shuffle.input.buffer.percent to limit the errors, but I am not >> fully confident for the scalability of the process. >> >> Any help would be welcomed >> >> once again, many thanks >> Olivier >> >> >> P.S: sorry if I misunderstood the code, any explanation would be really >> welcomed >> >> -- >> >> >> >> >> > -- Arun C. Murthy Hortonworks Inc. http://hortonworks.com/