Revision: 3959 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=3959&view=rev Author: jdh2358 Date: 2007-10-16 18:15:48 -0700 (Tue, 16 Oct 2007)
Log Message: ----------- made a classes dir for course specific items Modified Paths: -------------- trunk/py4science/examples/distributions.py trunk/py4science/examples/logistic/maplib.pyc Added Paths: ----------- trunk/py4science/classes/ trunk/py4science/classes/course_checklist_umich.py trunk/py4science/classes/pomona_agenda.doc trunk/py4science/classes/pomona_agenda.txt Copied: trunk/py4science/classes/course_checklist_umich.py (from rev 3942, trunk/py4science/course_checklist_umich.py) =================================================================== --- trunk/py4science/classes/course_checklist_umich.py (rev 0) +++ trunk/py4science/classes/course_checklist_umich.py 2007-10-17 01:15:48 UTC (rev 3959) @@ -0,0 +1,15 @@ +#!/usr/bin/env python +"""Minimal test script to check for modules needed in python course""" + +modules = ['numpy','scipy','matplotlib','IPython'] + + +for mname in modules: + try: + exec "import %s" % mname + except ImportError: + print '*** ERROR: module %s could not be imported.' % mname + else: + print '%s: OK' % mname + +print 'Also remember to check that SPE is installed.' Added: trunk/py4science/classes/pomona_agenda.doc =================================================================== (Binary files differ) Property changes on: trunk/py4science/classes/pomona_agenda.doc ___________________________________________________________________ Name: svn:mime-type + application/octet-stream Added: trunk/py4science/classes/pomona_agenda.txt =================================================================== --- trunk/py4science/classes/pomona_agenda.txt (rev 0) +++ trunk/py4science/classes/pomona_agenda.txt 2007-10-17 01:15:48 UTC (rev 3959) @@ -0,0 +1,45 @@ +DAY 1: + +Introduction: + + 35 min : Scientific computing in python (standard overhead talk) + + 45 min: The core tools -- ipython, numpy, matplotlib and scipy. (type along) + +Break: 15 min + +Exercises session 1: + + 45 min: Working with data files, web based resources, date handling, + CSV files, and record arrays. Word counting exercise. + (urllib, csv, dateutils, matplotlib.mlab) + + 45 min: Numerical integration, trapz and Newton's quadrature (scipy.integrate) + +Lunch Break: 45 min + +Exercises session 2: + + 45 min: Linear algebra: Moire Glass patterns + + 45 min: Statisical distributions, random numbers, central limit theorem (scipy.stats) + + 45 min: Descriptive statistics and graphs: mean, variance, skew, + kurtosis, histograms, autocorrelation, power spectra, + spectrogram (scipy.stats, matplotlib.mlab and pylab) + +Break: 15 min + +Exercises session 3: + + 60 min: Interpolation, data modeling and optimization (scipy.interpolate and scipy.optimize) + + 45 min: Using code from other languages (FORTRAN, C, C++) -- + Presentation (pyrex, weave, f2py, ctypes) + + +DAY 2: + +Exercise Session 4: + + 45 minutes: screen scraping - extracting data from web pages (BeautifulSoup) \ No newline at end of file Modified: trunk/py4science/examples/distributions.py =================================================================== --- trunk/py4science/examples/distributions.py 2007-10-16 19:39:57 UTC (rev 3958) +++ trunk/py4science/examples/distributions.py 2007-10-17 01:15:48 UTC (rev 3959) @@ -4,7 +4,7 @@ source using the random number generator. Verify the numerical results by plotting the analytical density functions from scipy.stats """ -import numpy +import numpy as npy import scipy.stats from pylab import figure, show, close @@ -18,14 +18,14 @@ # in each time interval, the probability of an emission rate = 20. # the emission rate in Hz -dx = 0.001 # the sampling interval in seconds -t = numpy.arange(N)*dx # the time vector +dt = 0.001 # the sampling interval in seconds +t = npy.arange(N)*dt # the time vector # the probability of an emission is proportionate to the rate and the interval -emit_times = t[uninse < rate*dx] +emit_times = t[uninse < rate*dt] # the difference in the emission times is the wait time -wait_times = numpy.diff(emit_times) +wait_times = npy.diff(emit_times) # plot the distribution of waiting times and the expected exponential # density function lambda exp( lambda wt) where lambda is the rate @@ -37,7 +37,7 @@ fig = figure() ax = fig.add_subplot(111) p, bins, patches = ax.hist(wait_times, 100, normed=True) -l1, = ax.plot(bins, rate*numpy.exp(-rate * bins), lw=2, color='red') +l1, = ax.plot(bins, rate*npy.exp(-rate * bins), lw=2, color='red') l2, = ax.plot(bins, scipy.stats.expon.pdf(bins, 0, 1./rate), lw=2, ls='--', color='green') ax.set_xlabel('waiting time') @@ -53,7 +53,7 @@ # gamma distribution. Use scipy.stats.gamma to compare the fits. # Hint: you can stride your emission times array to get every 2nd # emission -wait_times2 = numpy.diff(emit_times[::2]) +wait_times2 = npy.diff(emit_times[::2]) fig = figure() ax = fig.add_subplot(111) p, bins, patches = ax.hist(wait_times2, 100, normed=True) @@ -79,8 +79,8 @@ # variance expon_mean, expon_var = scipy.stats.expon(0, 1./rate).stats() mu, var = 10*expon_mean, 10*expon_var -sigma = numpy.sqrt(var) -wait_times10 = numpy.diff(emit_times[::10]) +sigma = npy.sqrt(var) +wait_times10 = npy.diff(emit_times[::10]) fig = figure() ax = fig.add_subplot(111) p, bins, patches = ax.hist(wait_times10, 100, normed=True) Modified: trunk/py4science/examples/logistic/maplib.pyc =================================================================== (Binary files differ) This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site. ------------------------------------------------------------------------- This SF.net email is sponsored by: Splunk Inc. Still grepping through log files to find problems? Stop. Now Search log events and configuration files using AJAX and a browser. Download your FREE copy of Splunk now >> http://get.splunk.com/ _______________________________________________ Matplotlib-checkins mailing list Matplotlib-checkins@lists.sourceforge.net https://lists.sourceforge.net/lists/listinfo/matplotlib-checkins