Revision: 8980
          http://matplotlib.svn.sourceforge.net/matplotlib/?rev=8980&view=rev
Author:   jswhit
Date:     2011-02-12 16:01:55 +0000 (Sat, 12 Feb 2011)

Log Message:
-----------
obsolete file.

Removed Paths:
-------------
    trunk/toolkits/basemap/lib/mpl_toolkits/basemap/pupynere.py

Deleted: trunk/toolkits/basemap/lib/mpl_toolkits/basemap/pupynere.py
===================================================================
--- trunk/toolkits/basemap/lib/mpl_toolkits/basemap/pupynere.py 2011-02-12 
14:01:34 UTC (rev 8979)
+++ trunk/toolkits/basemap/lib/mpl_toolkits/basemap/pupynere.py 2011-02-12 
16:01:55 UTC (rev 8980)
@@ -1,688 +0,0 @@
-"""
-NetCDF reader/writer module.
-
-This module implements the Scientific.IO.NetCDF API to read and create
-NetCDF files. The same API is also used in the PyNIO and pynetcdf
-modules, allowing these modules to be used interchangebly when working
-with NetCDF files. The major advantage of ``scipy.io.netcdf`` over other
-modules is that it doesn't require the code to be linked to the NetCDF
-libraries as the other modules do.
-
-The code is based on the `NetCDF file format specification
-<http://www.unidata.ucar.edu/software/netcdf/guide_15.html>`_. A NetCDF
-file is a self-describing binary format, with a header followed by
-data. The header contains metadata describing dimensions, variables
-and the position of the data in the file, so access can be done in an
-efficient manner without loading unnecessary data into memory. We use
-the ``mmap`` module to create Numpy arrays mapped to the data on disk,
-for the same purpose.
-
-The structure of a NetCDF file is as follows:
-
-    C D F <VERSION BYTE> <NUMBER OF RECORDS>
-    <DIMENSIONS> <GLOBAL ATTRIBUTES> <VARIABLES METADATA>
-    <NON-RECORD DATA> <RECORD DATA>
-
-Record data refers to data where the first axis can be expanded at
-will. All record variables share a same dimension at the first axis,
-and they are stored at the end of the file per record, ie
-
-    A[0], B[0], ..., A[1], B[1], ..., etc,
-
-so that new data can be appended to the file without changing its original
-structure. Non-record data are padded to a 4n bytes boundary. Record data
-are also padded, unless there is exactly one record variable in the file,
-in which case the padding is dropped.  All data is stored in big endian
-byte order.
-
-The Scientific.IO.NetCDF API allows attributes to be added directly to
-instances of ``netcdf_file`` and ``netcdf_variable``. To differentiate
-between user-set attributes and instance attributes, user-set attributes
-are automatically stored in the ``_attributes`` attribute by overloading
-``__setattr__``. This is the reason why the code sometimes uses
-``obj.__dict__['key'] = value``, instead of simply ``obj.key = value``;
-otherwise the key would be inserted into userspace attributes.
-
-To create a NetCDF file::
-
-    >>> import time
-    >>> f = netcdf_file('simple.nc', 'w')
-    >>> f.history = 'Created for a test'
-    >>> f.createDimension('time', 10)
-    >>> time = f.createVariable('time', 'i', ('time',))
-    >>> time[:] = range(10)
-    >>> time.units = 'days since 2008-01-01'
-    >>> f.close()
-
-To read the NetCDF file we just created::
-
-    >>> f = netcdf_file('simple.nc', 'r')
-    >>> print f.history
-    Created for a test
-    >>> time = f.variables['time']
-    >>> print time.units
-    days since 2008-01-01
-    >>> print time.shape
-    (10,)
-    >>> print time[-1]
-    9
-    >>> f.close()
-
-TODO: properly implement ``_FillValue``.
-"""
-
-__all__ = ['netcdf_file', 'netcdf_variable']
-
-
-from operator import mul
-from mmap import mmap, ACCESS_READ
-
-from numpy import fromstring, ndarray, dtype, empty, array, asarray, squeeze,\
-                  zeros, ma
-from numpy import little_endian as LITTLE_ENDIAN
-
-
-ABSENT       = '\x00\x00\x00\x00\x00\x00\x00\x00'
-ZERO         = '\x00\x00\x00\x00'
-NC_BYTE      = '\x00\x00\x00\x01'
-NC_CHAR      = '\x00\x00\x00\x02'
-NC_SHORT     = '\x00\x00\x00\x03'
-NC_INT       = '\x00\x00\x00\x04'
-NC_FLOAT     = '\x00\x00\x00\x05'
-NC_DOUBLE    = '\x00\x00\x00\x06'
-NC_DIMENSION = '\x00\x00\x00\n'
-NC_VARIABLE  = '\x00\x00\x00\x0b'
-NC_ATTRIBUTE = '\x00\x00\x00\x0c'
-
-
-TYPEMAP = { NC_BYTE:   ('b', 1),
-            NC_CHAR:   ('c', 1),
-            NC_SHORT:  ('h', 2),
-            NC_INT:    ('i', 4),
-            NC_FLOAT:  ('f', 4),
-            NC_DOUBLE: ('d', 8) }
-
-REVERSE = { 'b': NC_BYTE,
-            'c': NC_CHAR,
-            'h': NC_SHORT,
-            'i': NC_INT,
-            'f': NC_FLOAT,
-            'd': NC_DOUBLE,
-
-            # these come from asarray(1).dtype.char and 
asarray('foo').dtype.char,
-            # used when getting the types from generic attributes.
-            'l': NC_INT,
-            'S': NC_CHAR }
-
-
-class netcdf_file(object):
-    """
-    A ``netcdf_file`` object has two standard attributes: ``dimensions`` and
-    ``variables``. The values of both are dictionaries, mapping dimension
-    names to their associated lengths and variable names to variables,
-    respectively. Application programs should never modify these
-    dictionaries.
-
-    All other attributes correspond to global attributes defined in the
-    NetCDF file. Global file attributes are created by assigning to an
-    attribute of the ``netcdf_file`` object.
-
-    """
-    def __init__(self, filename, mode='r', mmap=True, version=1,\
-                 maskandscale=False):
-        self.filename = filename
-        self.use_mmap = mmap
-        self.version_byte = version
-        self._maskandscale = maskandscale
-
-        assert mode in 'rw', "Mode must be either 'r' or 'w'."
-        self.mode = mode
-
-        self.dimensions = {}
-        self.variables = {}
-
-        self._dims = []
-        self._recs = 0
-        self._recsize = 0
-
-        self.fp = open(self.filename, '%sb' % mode)
-
-        self._attributes = {}
-
-        if mode is 'r':
-            self._read()
-
-    def __setattr__(self, attr, value):
-        # Store user defined attributes in a separate dict,
-        # so we can save them to file later.
-        try:
-            self._attributes[attr] = value
-        except AttributeError:
-            pass
-        self.__dict__[attr] = value
-
-    def close(self):
-        if not self.fp.closed:
-            try:
-                self.flush()
-            finally:
-                self.fp.close()
-    __del__ = close
-
-    def createDimension(self, name, length):
-        self.dimensions[name] = length
-        self._dims.append(name)
-
-    def createVariable(self, name, type, dimensions):
-        shape = tuple([self.dimensions[dim] for dim in dimensions])
-        shape_ = tuple([dim or 0 for dim in shape])  # replace None with 0 for 
numpy
-
-        if isinstance(type, basestring): type = dtype(type)
-        typecode, size = type.char, type.itemsize
-        dtype_ = '>%s' % typecode
-        if size > 1: dtype_ += str(size)
-
-        data = empty(shape_, dtype=dtype_)
-        self.variables[name] = netcdf_variable(data, typecode, shape,\
-                dimensions, maskandscale=self._maskandscale)
-        return self.variables[name]
-
-    def flush(self):
-        if self.mode is 'w':
-            self._write()
-    sync = flush
-
-    def _write(self):
-        self.fp.write('CDF')
-        self.fp.write(array(self.version_byte, '>b').tostring())
-
-        # Write headers and data.
-        self._write_numrecs()
-        self._write_dim_array()
-        self._write_gatt_array()
-        self._write_var_array()
-
-    def _write_numrecs(self):
-        # Get highest record count from all record variables.
-        for var in self.variables.values():
-            if var.isrec and len(var.data) > self._recs:
-                self.__dict__['_recs'] = len(var.data)
-        self._pack_int(self._recs)
-
-    def _write_dim_array(self):
-        if self.dimensions:
-            self.fp.write(NC_DIMENSION)
-            self._pack_int(len(self.dimensions))
-            for name in self._dims:
-                self._pack_string(name)
-                length = self.dimensions[name]
-                self._pack_int(length or 0)  # replace None with 0 for record 
dimension
-        else:
-            self.fp.write(ABSENT)
-
-    def _write_gatt_array(self):
-        self._write_att_array(self._attributes)
-
-    def _write_att_array(self, attributes):
-        if attributes:
-            self.fp.write(NC_ATTRIBUTE)
-            self._pack_int(len(attributes))
-            for name, values in attributes.items():
-                self._pack_string(name)
-                self._write_values(values)
-        else:
-            self.fp.write(ABSENT)
-
-    def _write_var_array(self):
-        if self.variables:
-            self.fp.write(NC_VARIABLE)
-            self._pack_int(len(self.variables))
-
-            # Sort variables non-recs first, then recs.
-            variables = self.variables.items()
-            variables.sort(key=lambda (k, v): v._shape and not v.isrec)
-            variables.reverse()
-            variables = [k for (k, v) in variables]
-
-            # Set the metadata for all variables.
-            for name in variables:
-                self._write_var_metadata(name)
-            # Now that we have the metadata, we know the vsize of
-            # each record variable, so we can calculate recsize.
-            self.__dict__['_recsize'] = sum([
-                    var._vsize for var in self.variables.values()
-                    if var.isrec])
-            # Set the data for all variables.
-            for name in variables:
-                self._write_var_data(name)
-        else:
-            self.fp.write(ABSENT)
-
-    def _write_var_metadata(self, name):
-        var = self.variables[name]
-
-        self._pack_string(name)
-        self._pack_int(len(var.dimensions))
-        for dimname in var.dimensions:
-            dimid = self._dims.index(dimname)
-            self._pack_int(dimid)
-
-        self._write_att_array(var._attributes)
-
-        nc_type = REVERSE[var.typecode()]
-        self.fp.write(nc_type)
-
-        if not var.isrec:
-            vsize = var.data.size * var.data.itemsize
-            vsize += -vsize % 4
-        else:  # record variable
-            try:
-                vsize = var.data[0].size * var.data.itemsize
-            except IndexError:
-                vsize = 0
-            rec_vars = len([var for var in self.variables.values()
-                    if var.isrec])
-            if rec_vars > 1:
-                vsize += -vsize % 4
-        self.variables[name].__dict__['_vsize'] = vsize
-        self._pack_int(vsize)
-
-        # Pack a bogus begin, and set the real value later.
-        self.variables[name].__dict__['_begin'] = self.fp.tell()
-        self._pack_begin(0)
-
-    def _write_var_data(self, name):
-        var = self.variables[name]
-
-        # Set begin in file header.
-        the_beguine = self.fp.tell()
-        self.fp.seek(var._begin)
-        self._pack_begin(the_beguine)
-        self.fp.seek(the_beguine)
-
-        # Write data.
-        if not var.isrec:
-            self.fp.write(var.data.tostring())
-            count = var.data.size * var.data.itemsize
-            self.fp.write('0' * (var._vsize - count))
-        else:  # record variable
-            # Handle rec vars with shape[0] < nrecs.
-            if self._recs > len(var.data):
-                shape = (self._recs,) + var.data.shape[1:]
-                var.data.resize(shape)
-
-            pos0 = pos = self.fp.tell()
-            for rec in var.data:
-                # Apparently scalars cannot be converted to big endian. If we
-                # try to convert a ``=i4`` scalar to, say, '>i4' the dtype
-                # will remain as ``=i4``.
-                if not rec.shape and (rec.dtype.byteorder == '<' or
-                        (rec.dtype.byteorder == '=' and LITTLE_ENDIAN)):
-                    rec = rec.byteswap()
-                self.fp.write(rec.tostring())
-                # Padding
-                count = rec.size * rec.itemsize
-                self.fp.write('0' * (var._vsize - count))
-                pos += self._recsize
-                self.fp.seek(pos)
-            self.fp.seek(pos0 + var._vsize)
-
-    def _write_values(self, values):
-        values = asarray(values)
-        values = values.astype(values.dtype.newbyteorder('>'))
-
-        nc_type = REVERSE[values.dtype.char]
-        self.fp.write(nc_type)
-
-        if values.dtype.char == 'S':
-            nelems = values.itemsize
-        else:
-            nelems = values.size
-        self._pack_int(nelems)
-
-        if not values.shape and (values.dtype.byteorder == '<' or
-                (values.dtype.byteorder == '=' and LITTLE_ENDIAN)):
-            values = values.byteswap()
-        self.fp.write(values.tostring())
-        count = values.size * values.itemsize
-        self.fp.write('0' * (-count % 4))  # pad
-
-    def _read(self):
-        # Check magic bytes and version
-        magic = self.fp.read(3)
-        assert magic == 'CDF', "Error: %s is not a valid NetCDF 3 file" % 
self.filename
-        self.__dict__['version_byte'] = fromstring(self.fp.read(1), '>b')[0]
-
-        # Read file headers and set data.
-        self._read_numrecs()
-        self._read_dim_array()
-        self._read_gatt_array()
-        self._read_var_array()
-
-    def _read_numrecs(self):
-        self.__dict__['_recs'] = self._unpack_int()
-
-    def _read_dim_array(self):
-        header = self.fp.read(4)
-        assert header in [ZERO, NC_DIMENSION]
-        count = self._unpack_int()
-
-        for dim in range(count):
-            name = self._unpack_string()
-            length = self._unpack_int() or None  # None for record dimension
-            self.dimensions[name] = length
-            self._dims.append(name)  # preserve order
-
-    def _read_gatt_array(self):
-        for k, v in self._read_att_array().items():
-            self.__setattr__(k, v)
-
-    def _read_att_array(self):
-        header = self.fp.read(4)
-        assert header in [ZERO, NC_ATTRIBUTE]
-        count = self._unpack_int()
-
-        attributes = {}
-        for attr in range(count):
-            name = self._unpack_string()
-            attributes[name] = self._read_values()
-        return attributes
-
-    def _read_var_array(self):
-        header = self.fp.read(4)
-        assert header in [ZERO, NC_VARIABLE]
-
-        begin = 0
-        dtypes = {'names': [], 'formats': []}
-        rec_vars = []
-        count = self._unpack_int()
-        for var in range(count):
-            name, dimensions, shape, attributes, typecode, size, dtype_, 
begin_, vsize = self._read_var()
-            if shape and shape[0] is None:
-                rec_vars.append(name)
-                self.__dict__['_recsize'] += vsize
-                if begin == 0: begin = begin_
-                dtypes['names'].append(name)
-                dtypes['formats'].append(str(shape[1:]) + dtype_)
-
-                # Handle padding with a virtual variable.
-                if typecode in 'bch':
-                    actual_size = reduce(mul, (1,) + shape[1:]) * size
-                    padding = -actual_size % 4
-                    if padding:
-                        dtypes['names'].append('_padding_%d' % var)
-                        dtypes['formats'].append('(%d,)>b' % padding)
-
-                # Data will be set later.
-                data = None
-            else:
-                if self.use_mmap:
-                    mm = mmap(self.fp.fileno(), begin_+vsize, 
access=ACCESS_READ)
-                    data = ndarray.__new__(ndarray, shape, dtype=dtype_,
-                            buffer=mm, offset=begin_, order=0)
-                else:
-                    pos = self.fp.tell()
-                    self.fp.seek(begin_)
-                    data = fromstring(self.fp.read(vsize), dtype=dtype_)
-                    data.shape = shape
-                    self.fp.seek(pos)
-
-            # Add variable.
-            self.variables[name] = netcdf_variable(
-                    data, typecode, shape, dimensions, attributes,
-                    maskandscale=self._maskandscale)
-
-        if rec_vars:
-            # Remove padding when only one record variable.
-            if len(rec_vars) == 1:
-                dtypes['names'] = dtypes['names'][:1]
-                dtypes['formats'] = dtypes['formats'][:1]
-
-            # Build rec array.
-            if self.use_mmap:
-                mm = mmap(self.fp.fileno(), begin+self._recs*self._recsize, 
access=ACCESS_READ)
-                rec_array = ndarray.__new__(ndarray, (self._recs,), 
dtype=dtypes,
-                        buffer=mm, offset=begin, order=0)
-            else:
-                pos = self.fp.tell()
-                self.fp.seek(begin)
-                rec_array = fromstring(self.fp.read(self._recs*self._recsize), 
dtype=dtypes)
-                rec_array.shape = (self._recs,)
-                self.fp.seek(pos)
-
-            for var in rec_vars:
-                self.variables[var].__dict__['data'] = rec_array[var]
-
-    def _read_var(self):
-        name = self._unpack_string()
-        dimensions = []
-        shape = []
-        dims = self._unpack_int()
-
-        for i in range(dims):
-            dimid = self._unpack_int()
-            dimname = self._dims[dimid]
-            dimensions.append(dimname)
-            dim = self.dimensions[dimname]
-            shape.append(dim)
-        dimensions = tuple(dimensions)
-        shape = tuple(shape)
-
-        attributes = self._read_att_array()
-        nc_type = self.fp.read(4)
-        vsize = self._unpack_int()
-        begin = [self._unpack_int, self._unpack_int64][self.version_byte-1]()
-
-        typecode, size = TYPEMAP[nc_type]
-        if typecode is 'c':
-            dtype_ = '>c'
-        else:
-            dtype_ = '>%s' % typecode
-            if size > 1: dtype_ += str(size)
-
-        return name, dimensions, shape, attributes, typecode, size, dtype_, 
begin, vsize
-
-    def _read_values(self):
-        nc_type = self.fp.read(4)
-        n = self._unpack_int()
-
-        typecode, size = TYPEMAP[nc_type]
-
-        count = n*size
-        values = self.fp.read(count)
-        self.fp.read(-count % 4)  # read padding
-
-        if typecode is not 'c':
-            values = fromstring(values, dtype='>%s%d' % (typecode, size))
-            if values.shape == (1,): values = values[0]
-        else:
-            values = values.rstrip('\x00')
-        return values
-
-    def _pack_begin(self, begin):
-        if self.version_byte == 1:
-            self._pack_int(begin)
-        elif self.version_byte == 2:
-            self._pack_int64(begin)
-
-    def _pack_int(self, value):
-        self.fp.write(array(value, '>i').tostring())
-    _pack_int32 = _pack_int
-
-    def _unpack_int(self):
-        return fromstring(self.fp.read(4), '>i')[0]
-    _unpack_int32 = _unpack_int
-
-    def _pack_int64(self, value):
-        self.fp.write(array(value, '>q').tostring())
-
-    def _unpack_int64(self):
-        return fromstring(self.fp.read(8), '>q')[0]
-
-    def _pack_string(self, s):
-        count = len(s)
-        self._pack_int(count)
-        self.fp.write(s)
-        self.fp.write('0' * (-count % 4))  # pad
-
-    def _unpack_string(self):
-        count = self._unpack_int()
-        s = self.fp.read(count).rstrip('\x00')
-        self.fp.read(-count % 4)  # read padding
-        return s
-
-
-class netcdf_variable(object):
-    """
-    ``netcdf_variable`` objects are constructed by calling the method
-    ``createVariable`` on the netcdf_file object.
-
-    ``netcdf_variable`` objects behave much like array objects defined in
-    Numpy, except that their data resides in a file. Data is read by
-    indexing and written by assigning to an indexed subset; the entire
-    array can be accessed by the index ``[:]`` or using the methods
-    ``getValue`` and ``assignValue``. ``netcdf_variable`` objects also
-    have attribute ``shape`` with the same meaning as for arrays, but
-    the shape cannot be modified. There is another read-only attribute
-    ``dimensions``, whose value is the tuple of dimension names.
-
-    All other attributes correspond to variable attributes defined in
-    the NetCDF file. Variable attributes are created by assigning to an
-    attribute of the ``netcdf_variable`` object.
-
-    """
-    def __init__(self, data, typecode, shape, dimensions, attributes=None,\
-                 maskandscale=False):
-        self.data = data
-        self._typecode = typecode
-        self._shape = shape
-        self.dimensions = dimensions
-        self._maskandscale = maskandscale
-
-        self._attributes = attributes or {}
-        for k, v in self._attributes.items():
-            self.__dict__[k] = v
-
-    def __setattr__(self, attr, value):
-        # Store user defined attributes in a separate dict,
-        # so we can save them to file later.
-        try:
-            self._attributes[attr] = value
-        except AttributeError:
-            pass
-        self.__dict__[attr] = value
-
-    @property
-    def isrec(self):
-        return self.data.shape and not self._shape[0]
-
-    @property
-    def shape(self):
-        return self.data.shape
-
-    def __len__(self):
-        return self.data.shape[0]
-
-    def getValue(self):
-        return self.data.item()
-
-    def assignValue(self, value):
-        self.data.itemset(value)
-
-    def typecode(self):
-        return self._typecode
-
-    def __getitem__(self, index):
-        data = squeeze(self.data[index])
-        if self._maskandscale:
-            return _unmaskandscale(self,data)
-        else:
-            return data
-
-    def __setitem__(self, index, data):
-        if self._maskandscale:
-            data = _maskandscale(self,data)
-        # Expand data for record vars?
-        if self.isrec:
-            if isinstance(index, tuple):
-                rec_index = index[0]
-            else:
-                rec_index = index
-            if isinstance(rec_index, slice):
-                recs = (rec_index.start or 0) + len(data)
-            else:
-                recs = rec_index + 1
-            if recs > len(self.data):
-                shape = (recs,) + self._shape[1:]
-                self.data.resize(shape)
-        self.data[index] = data
-
-
-NetCDFFile = netcdf_file
-NetCDFVariable = netcdf_variable
-
-# default _FillValue for netcdf types (apply also to corresponding
-# DAP types).
-_default_fillvals = {'c':'\0',
-                     'S':"",
-                     'b':-127,
-                     'B':-127,
-                     'h':-32767,
-                     'H':65535,
-                     'i':-2147483647L,
-                     'L':4294967295L,
-                     'q':-2147483647L,
-                     'f':9.9692099683868690e+36,
-                     'd':9.9692099683868690e+36}
-def _unmaskandscale(var,data):
-    # if _maskandscale mode set to True, perform
-    # automatic unpacking using scale_factor/add_offset
-    # and automatic conversion to masked array using
-    # missing_value/_Fill_Value.
-    totalmask = zeros(data.shape, bool)
-    fill_value = None
-    if hasattr(var, 'missing_value') and (data == var.missing_value).any():
-        mask=data==var.missing_value
-        fill_value = var.missing_value
-        totalmask += mask
-    if hasattr(var, '_FillValue') and (data == var._FillValue).any():
-        mask=data==var._FillValue
-        if fill_value is None:
-            fill_value = var._FillValue
-        totalmask += mask
-    else:
-        fillval = _default_fillvals[var.typecode()]
-        if (data == fillval).any():
-            mask=data==fillval
-            if fill_value is None:
-                fill_value = fillval
-            totalmask += mask
-    # all values where data == missing_value or _FillValue are
-    # masked.  fill_value set to missing_value if it exists,
-    # otherwise _FillValue.
-    if fill_value is not None:
-        data = ma.masked_array(data,mask=totalmask,fill_value=fill_value)
-    # if variable has scale_factor and add_offset attributes, rescale.
-    if hasattr(var, 'scale_factor') and hasattr(var, 'add_offset'):
-        data = var.scale_factor*data + var.add_offset
-    return data
-
-def _maskandscale(var,data):
-    # if _maskandscale mode set to True, perform
-    # automatic packing using scale_factor/add_offset
-    # and automatic filling of masked arrays using
-    # missing_value/_Fill_Value.
-    # use missing_value as fill value.
-    # if no missing value set, use _FillValue.
-    if hasattr(data,'mask'):
-        if hasattr(var, 'missing_value'):
-            fillval = var.missing_value
-        elif hasattr(var, '_FillValue'):
-            fillval = var._FillValue
-        else:
-            fillval = _default_fillvals[var.typecode()]
-        data = data.filled(fill_value=fillval)
-    # pack using scale_factor and add_offset.
-    if hasattr(var, 'scale_factor') and hasattr(var, 'add_offset'):
-        data = (data - var.add_offset)/var.scale_factor
-    return data


This was sent by the SourceForge.net collaborative development platform, the 
world's largest Open Source development site.

------------------------------------------------------------------------------
The ultimate all-in-one performance toolkit: Intel(R) Parallel Studio XE:
Pinpoint memory and threading errors before they happen.
Find and fix more than 250 security defects in the development cycle.
Locate bottlenecks in serial and parallel code that limit performance.
http://p.sf.net/sfu/intel-dev2devfeb
_______________________________________________
Matplotlib-checkins mailing list
Matplotlib-checkins@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/matplotlib-checkins

Reply via email to