Shouldn't the PSD for a simple sine
wave tend to infinity
the spectral resolution
will impact the amplitude, if you
are not dealing with a density. by definition a spectral density
has applied the bandwidth resolution correction. the PSD amplitude
should correspond to the RMS amplitude of the sine wave. in the
example a 1VRMS amplitude sine wave (time domain) should have a
PSD power of 20*log(1V) = 0dB. The windowing function will impact
this ideal number a bit, but certainly not by 25dB.
[EMAIL PROTECTED] wrote:
Are you sure that the answer should
be zero? Shouldn't the PSD for a simple sine wave tend to infinity
(depending on the resolution)?
Please try the attached script.
The answer should be ~0 dB for each of the frequencies.
Most likely a simple scaling issue/parameter of which i'm ignorant.
--
______________________________________________________________________
This email has been scanned by the MessageLabs Email Security System.
For more information please visit http://www.messagelabs.com/email
______________________________________________________________________##----------------------------------------------------------------------------
## Name: psd_scale.py
##
## Purpose: Test Power Spectral Density of 1Vrms data
## Depends on Python SciPy and NumPy
##
## Author: J Park
##
## Created: 10/17/07
##
## Modified:
##----------------------------------------------------------------------------
try:
from numpy import * # www.numpy.org numpy.scipy.org
except ImportError:
print "Failed to import numpy."
try:
import pylab as mp # matplotlib.sourceforge.net
from matplotlib.font_manager import fontManager, FontProperties
except ImportError:
print "Failed to import pylab."
# Default Parameters
nFFT = 1024
overlap = 512
freqSample = 100.
PlotAll = False
WriteOutput = False
##----------------------------------------------------------------------------
## Main module
def main():
deltaF = freqSample/nFFT # Frequency resolution in Hz
deltaT = 1./freqSample # Sample interval
print 'Sample interval %e (s)' % (deltaT)
print 'Frequency resolution %e (Hz)' % (deltaF)
# Setup Plots
#
----------------------------------------------------------------------
mp.figure(1)
mp.title ( "PSD" )
mp.ylabel( "(dB)" )
mp.xlabel( "Frequency (Hz)" )
legendFont = FontProperties(size='small')
ymin = 0
ymax = 30
xmin = 0
xmax = 50
xticks = 5
yticks = 5
if PlotAll:
mp.figure(2)
mp.title ( "Input Timeseries" )
mp.ylabel( "Amplitude" )
mp.xlabel( "time (s)" )
# Create some synthetic data with unity RMS amplitude = 0
dB
#
----------------------------------------------------------------------
t = mp.arange(0., 60., deltaT) # 60 seconds at deltaT interval
A = 1.414
y0 = A * sin( 2. * math.pi * 5 * t )
y1 = A * sin( 2. * math.pi * 10 * t )
y2 = A * sin( 2. * math.pi * 20 * t )
y3 = A * sin( 2. * math.pi * 30 * t )
y4 = A * sin( 2. * math.pi * 40 * t )
y5 = A * sin( 2. * math.pi * 45 * t )
dataList = [ y0, y1, y2, y3, y4, y5 ]
for data in dataList:
inputDataLen = len( data )
numAverages = math.floor( inputDataLen
/ (overlap) ) - 1
normalizedRandomError = 1./math.sqrt( numAverages
)
print "%d points" % ( inputDataLen
),
print "%d averages" % (numAverages),
print "normalized random error %.3f"
% ( normalizedRandomError )
mp.figure(1)
(Pxx, freqs) = mp.psd( data,
NFFT = nFFT,
Fs = freqSample,
noverlap = overlap,
lw = 2,
label = '' )
Pxx_dB = 10.*log10(Pxx)
if PlotAll:
mp.figure(2)
mp.plot(t, data, label='' )
# Write Output data
#
----------------------------------------------------------------------
if WriteOutput:
PxxLen = len(Pxx)
OutputFile = "PSD.dat"
fdOutFile = open( OutputFile,
'a' )
fdOutFile.write( "Freq\t\tPower(dB)\n"
)
for i in range(PxxLen):
fdOutFile.write(
"%.4e\t%.3f\n" % ( freqs[i], Pxx_dB[i] ) )
fdOutFile.close()
print "Wrote ", PxxLen,
" points to ", OutputFile
# Show the Plot
#
----------------------------------------------------------------------
mp.figure(1)
mp.axis([xmin, xmax, ymin, ymax])
mp.xticks( arange(xmin, xmax+1, xticks) )
mp.yticks( arange(ymin, ymax , yticks) )
mp.title('')
mp.xlabel('Frequency (Hz)')
mp.ylabel(r'$\tt{dB re V^2/Hz}$')
#mp.legend( loc='upper right', prop=legendFont )
if WriteOutput:
plotFileName = "PSD.png"
mp.savefig( plotFileName )
print "Wrote png image to ", plotFileName
if PlotAll:
mp.figure(2)
#mp.legend( loc='lower left', prop=legendFont
)
mp.show()
print "Normal Exit"
## Main module
##----------------------------------------------------------------------------
##----------------------------------------------------------------------------
## Provide for cmd line invocation
if __name__ == "__main__":
main()
-------------------------------------------------------------------------
This SF.net email is sponsored by: Splunk Inc.
Still grepping through log files to find problems? Stop.
Now Search log events and configuration files using AJAX and a browser.
Download your FREE copy of Splunk now >>
http://get.splunk.com/_______________________________________________
Matplotlib-users mailing list
Matplotlib-users@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/matplotlib-users
UNITED GROUP
This email message is the property of United Group. The information in
this email is confidential and may be legally privileged. It is
intended solely for the addressee. Access to this email by anyone else
is unauthorised. If you are not the intended recipient, you may not
disclose, copy or distribute this email, nor take or omit to take any
action in reliance on it. United Group accepts no liability for any
damage caused by this email or any attachments due to viruses,
interference, interception, corruption or unauthorised access.
If you have received this email in error, please notify United Group
immediately by email to the sender's email address and delete this
document.
--
|