Stephane Raynaud wrote:
Ross,


one way is to mask (or remove) ocean points using the _geoslib module provided with basemap. When you create a Basemap instance, you can retrieve all its polygons land (continents and islands) with "mymap.coastpolygons". Thay are stored as numpy arrays, and you can convert them to _geoslib.Polygon objects :

poly = _geoslib.Polygon(N.asarray(coastalpoly).T)

Then you loop over all Polygons and all (x,y) points and test :

good_point = _geoslib.Point((x,y)).within(poly)

Thanks to this method, you can choose you optimal resolution.
You can even compute the intersection of you hexagons with coastal polygons using .intersection() and .area (instead of simply checking if the center is inside) and then reject points depending the fraction of the cell covered by land (or ocean).

Following Stephane's excellent suggestion, here's a prototype Basemap method that checks to see if a point is on land or over water. Ross - if you find it useful I'll include it in the next release. Note that it will be slow for lots of points or large map regions.

-Jeff

On Mon, Nov 2, 2009 at 8:07 AM, <ross.wil...@ga.gov.au <mailto:ross.wil...@ga.gov.au>> wrote:

    Listers,

    I'm using basemap to plot randomly sampled values (x,y,z) through
    hexbin.  This produces a very nice result. Some sample code is:
    ----------
    import numpy as np
    from numpy.random import seed
    import matplotlib.pyplot as plt
    from mpl_toolkits.basemap import Basemap
    from matplotlib.mlab import griddata

    ll_lat = -38.39477  # extent of area of interest
    ll_lon = 144.54767
    ur_lat = -37.51642
    ur_lon = 145.67144

    num_points = 100    # sample points

    # create random sampling over the area of interest
    seed(0)
    data = np.ones((3, num_points))
    data[0,:] *= ll_lon + np.random.random((num_points))*(ur_lon-ll_lon)
    data[1,:] *= ll_lat + np.random.random((num_points))*(ur_lat-ll_lat)
    data[2,:] *= np.random.random((num_points))*10000

    # plot the data
    fig = plt.figure()
    ax = fig.add_subplot(111)
    m = Basemap(projection='cyl', llcrnrlat=ll_lat, urcrnrlat=ur_lat,
               llcrnrlon=ll_lon, urcrnrlon=ur_lon, resolution='f',
               suppress_ticks=False, area_thresh=0.5)
    plt.hexbin(data[0,:], data[1,:], data[2,:], zorder=3)
    m.fillcontinents(color=(0.8,0.8,0.8,0), zorder=1)
    m.drawcoastlines(linewidth=0.25, color='k', zorder=2)
    plt.show()
    ----------

    This contrived example shows a sparse set of hexagons on both land
    and ocean.  I would like the hexagons over the ocean to be hidden.
     I can make the ones on land disappear by changing the 'zorder'
    parameter of .hexbin() to 0.  However I have found no way of doing
    the inverse and hiding hexagons over the ocean.

    Using drawlsmask() is too crude at a 5-minute resolution.

    Any ideas?

    Thanks,
    Ross

    
------------------------------------------------------------------------------
    Come build with us! The BlackBerry(R) Developer Conference in SF, CA
    is the only developer event you need to attend this year.
    Jumpstart your
    developing skills, take BlackBerry mobile applications to market
    and stay
    ahead of the curve. Join us from November 9 - 12, 2009. Register now!
    http://p.sf.net/sfu/devconference
    _______________________________________________
    Matplotlib-users mailing list
    Matplotlib-users@lists.sourceforge.net
    <mailto:Matplotlib-users@lists.sourceforge.net>
    https://lists.sourceforge.net/lists/listinfo/matplotlib-users




--
Stephane Raynaud
------------------------------------------------------------------------

------------------------------------------------------------------------------
Come build with us! The BlackBerry(R) Developer Conference in SF, CA
is the only developer event you need to attend this year. Jumpstart your
developing skills, take BlackBerry mobile applications to market and stay ahead of the curve. Join us from November 9 - 12, 2009. Register now!
http://p.sf.net/sfu/devconference
------------------------------------------------------------------------

_______________________________________________
Matplotlib-users mailing list
Matplotlib-users@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/matplotlib-users


--
Jeffrey S. Whitaker         Phone  : (303)497-6313
Meteorologist               FAX    : (303)497-6449
NOAA/OAR/PSD  R/PSD1        Email  : jeffrey.s.whita...@noaa.gov
325 Broadway                Office : Skaggs Research Cntr 1D-113
Boulder, CO, USA 80303-3328 Web    : http://tinyurl.com/5telg

import numpy as np
from numpy import ma
from numpy.random import seed
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap, _geoslib
from matplotlib.mlab import griddata

ll_lat = -38.39477  # extent of area of interest
ll_lon = 144.54767
ur_lat = -37.51642
ur_lon = 145.67144

num_points = 100    # sample points

# create random sampling over the area of interest
seed(0)
data = np.ones((3, num_points))
data[0,:] *= ll_lon + np.random.random((num_points))*(ur_lon-ll_lon)
data[1,:] *= ll_lat + np.random.random((num_points))*(ur_lat-ll_lat)
data[2,:] *= np.random.random((num_points))*10000

class Basemap2(Basemap):
    def is_land(self,xpt,ypt):
        landpt = False
        n = 0
        for x,y in self.coastpolygons:
            type = self.coastpolygontypes[n]
            if type in [1,3]: # land or island in lake
                b = np.asarray([x,y]).T
                poly = _geoslib.Polygon(b)
                landpt = _geoslib.Point((xpt,ypt)).within(poly)
                if landpt: break
            n = n + 1
        return landpt

# plot the data
fig = plt.figure()
m = Basemap2(projection='cyl', llcrnrlat=ll_lat, urcrnrlat=ur_lat,
                   llcrnrlon=ll_lon, urcrnrlon=ur_lon, resolution='f',
                   suppress_ticks=False, area_thresh=0.5)
for npt in range(data.shape[1]):
    if not m.is_land(data[0,npt],data[1,npt]):
       data[:,npt] = 1.e30
data = ma.masked_values(data,1.e30)
plt.hexbin(data[0,:], data[1,:], data[2,:],zorder=2)
m.fillcontinents(color=(0.8,0.8,0.8,0))
m.drawcoastlines(linewidth=0.25, color='k')
plt.show()
------------------------------------------------------------------------------
Come build with us! The BlackBerry(R) Developer Conference in SF, CA
is the only developer event you need to attend this year. Jumpstart your
developing skills, take BlackBerry mobile applications to market and stay 
ahead of the curve. Join us from November 9 - 12, 2009. Register now!
http://p.sf.net/sfu/devconference
_______________________________________________
Matplotlib-users mailing list
Matplotlib-users@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/matplotlib-users

Reply via email to