I'm working on a project that handles large data sets. Up to this point I had
not had any issues using matplotlib, but I tried yesterday to have it plot a
file that had 8 million float,float pairs in it and dies with the following
message:
pException in Tkinter callback
Traceback (most recent call last):
File "/usr/lib/python2.6/lib-tk/Tkinter.py", line 1413, in __call__
return self.func(*args)
File "/usr/lib/pymodules/python2.6/matplotlib/backends/backend_tkagg.py",
line 212, in resize
self.show()
File "/usr/lib/pymodules/python2.6/matplotlib/backends/backend_tkagg.py",
line 215, in draw
FigureCanvasAgg.draw(self)
File "/usr/lib/pymodules/python2.6/matplotlib/backends/backend_agg.py", line
314, in draw
self.figure.draw(self.renderer)
File "/usr/lib/pymodules/python2.6/matplotlib/artist.py", line 46, in
draw_wrapper
draw(artist, renderer, *kl)
File "/usr/lib/pymodules/python2.6/matplotlib/figure.py", line 774, in draw
for a in self.axes: a.draw(renderer)
File "/usr/lib/pymodules/python2.6/matplotlib/artist.py", line 46, in
draw_wrapper
draw(artist, renderer, *kl)
File "/usr/lib/pymodules/python2.6/matplotlib/axes.py", line 1721, in draw
a.draw(renderer)
File "/usr/lib/pymodules/python2.6/matplotlib/artist.py", line 46, in
draw_wrapper
draw(artist, renderer, *kl)
File "/usr/lib/pymodules/python2.6/matplotlib/lines.py", line 535, in draw
drawFunc(renderer, gc, tpath, affine.frozen())
File "/usr/lib/pymodules/python2.6/matplotlib/lines.py", line 874, in
_draw_lines
self._lineFunc(renderer, gc, path, trans)
File "/usr/lib/pymodules/python2.6/matplotlib/lines.py", line 918, in
_draw_solid
renderer.draw_path(gc, path, trans)
File "/usr/lib/pymodules/python2.6/matplotlib/backends/backend_agg.py", line
98, in draw_path
self._renderer.draw_path(gc, path, transform, rgbFace)
RuntimeError: Agg rendering complexity exceeded. Consider downsampling or
decimating your data.
I would prefer to not decimate my data if possible.
Ivan E. Tornes
------------------------------------------------------------------------------
Download Intel® Parallel Studio Eval
Try the new software tools for yourself. Speed compiling, find bugs
proactively, and fine-tune applications for parallel performance.
See why Intel Parallel Studio got high marks during beta.
http://p.sf.net/sfu/intel-sw-dev
_______________________________________________
Matplotlib-users mailing list
Matplotlib-users@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/matplotlib-users