This should be doable using the annotation. Here is a simple cook-up I just did. it uses a naive algorithm to place the labels, but I guess it gives you an idea how things work. a screenshot is attached.
Regards,
-JJ
from pylab import *
# make a square figure and axes
figure(1, figsize=(6,6))
ax = axes([0.1, 0.1, 0.8, 0.8])
labels = 'Frogs', 'Hogs', 'Dogs', 'Logs'
fracs = [15,30,45, 10]
explode=(0, 0.05, 0, 0)
p = pie(fracs, explode=explode, shadow=True)
title('Raining Hogs and Dogs', bbox={'facecolor':'0.8', 'pad':5})
for p1, l1 in zip(p[0], labels):
r = p1.r
dr = r*0.1
t1, t2 = p1.theta1, p1.theta2
theta = (t1+t2)/2.
xc, yc = r/2.*cos(theta/180.*pi), r/2.*sin(theta/180.*pi)
x1, y1 = (r+dr)*cos(theta/180.*pi), (r+dr)*sin(theta/180.*pi)
if x1 > 0 :
x1 = r+2*dr
ha, va = "left", "center"
tt = -180
cstyle="angle,angleA=0,angleB=%f"%(theta,)
else:
x1 = -(r+2*dr)
ha, va = "right", "center"
tt = 0
cstyle="angle,angleA=0,angleB=%f"%(theta,)
annotate(l1,
(xc, yc), xycoords="data",
xytext=(x1, y1), textcoords="data", ha=ha, va=va,
arrowprops=dict(arrowstyle="-",
connectionstyle=cstyle,
patchB=p1))
show()
<<attachment: new_piechart.png>>
------------------------------------------------------------------------------ Download Intel® Parallel Studio Eval Try the new software tools for yourself. Speed compiling, find bugs proactively, and fine-tune applications for parallel performance. See why Intel Parallel Studio got high marks during beta. http://p.sf.net/sfu/intel-sw-dev
_______________________________________________ Matplotlib-users mailing list [email protected] https://lists.sourceforge.net/lists/listinfo/matplotlib-users
