Try this: from pylab import * from numpy import *
Z = random.randn(100,100) figure() subplot(1,2,1) imgHandle = imshow(Z, cmap=cm.gray) scatter(random.rand(10)*100,random.rand(10)*100) colorbar(imgHandle) title('Hello') show() By the way, I find jet a bad colormap to represent scientific data: it suggests bands in the data that aren't there and when reduced to luminance (eg. students printing/copying in black/white or in the eyes of all your colorblind colleagues) the two halves of the scale are identical, rendering all graphs completely ambiguous. ;) Claus wrote: > Hi, > I've got two questions: > 1) one is related to colorbar() on multiple subfigures (see code example > below): how do I add a scatterplot if I wanted multiple subfigures? Or, what > am I doing wrong in the second code example > 2) in either of the examples, how can I increase the distance between the top > of the plot (imshow) and the bottom of the title? > > > # code example 1: this works > fig = plt.figure() > plt.title('Hello') > plt.imshow(interpolValsRas, cmap=cm.jet, interpolation='nearest', origin = > 'lower', extent=[5,95,5,95]) # , > plt.scatter(measurementLoc[:,0], measurementLoc[:,1], 10, messwerte, > cmap=cm.jet) > plt.colorbar(); > > > # code example 2: this works generally, but only if the second last line is > commented out > # Q: how do I add a scatterplot if I wanted multiple subfigures? > fig = plt.figure() > ax = fig.add_subplot(111) > plt.title('Hello') > ax.imshow(interpolValsRas, cmap=cm.jet, interpolation='nearest', origin = > 'lower', extent=[5,95,5,95]) # , > ax.scatter(measurementLoc[:,0], measurementLoc[:,1], 10, messwerte, > cmap=cm.jet) > # plt.colorbar(); > plt.show() > > Thanks for your help, > Claus > ------------------------------------------------------------------------------ > Download Intel® Parallel Studio Eval > Try the new software tools for yourself. Speed compiling, find bugs > proactively, and fine-tune applications for parallel performance. > See why Intel Parallel Studio got high marks during beta. > http://p.sf.net/sfu/intel-sw-dev > _______________________________________________ > Matplotlib-users mailing list > Matplotlib-users@lists.sourceforge.net > https://lists.sourceforge.net/lists/listinfo/matplotlib-users > ------------------------------------------------------------------------------ Download Intel® Parallel Studio Eval Try the new software tools for yourself. Speed compiling, find bugs proactively, and fine-tune applications for parallel performance. See why Intel Parallel Studio got high marks during beta. http://p.sf.net/sfu/intel-sw-dev _______________________________________________ Matplotlib-users mailing list Matplotlib-users@lists.sourceforge.net https://lists.sourceforge.net/lists/listinfo/matplotlib-users