> From: MONTAGU Thierry [mailto:thierry.mont...@cea.fr] > Sent: Friday, May 21, 2010 09:37 > > has anyone ever tried to make a quantile-quantile plot with pylab? > is there any build in function named say "qqplot" available ?
For a plot comparing samples to a theoretical distribution (and if you don't need masking as in Paul's example), you might be able to use scipy.stats.probplot, as follows: import matplotlib.pyplot as plt import scipy.stats as st values = st.norm.rvs(size=(100,)) # example data fig = plt.figure() # set up plot ax = fig.add_subplot(1, 1, 1) osm, osr = st.probplot(values, fit=0, dist='norm') # compute ax.plot(osm, osr, '.') # plot One way to include the fit line is (osm, osr), (m, b, r) = st.probplot(values, dist='norm') # compute osmf = osm.take([0, -1]) # endpoints osrf = m * osmf + b # fit line ax.plot(osm, osr, '.', osmf, osrf, '-') ------------------------------------------------------------------------------ _______________________________________________ Matplotlib-users mailing list Matplotlib-users@lists.sourceforge.net https://lists.sourceforge.net/lists/listinfo/matplotlib-users