The solution is already the aspect='auto', ie:

import numpy as np
from matplotlib import pyplot as plt
a = np.arange(100).reshape(10,10)
plt.imshow(a, aspect='auto')

aspect='auto' is what you were looking for, the documentation (as you
probably already found is for example at:
http://matplotlib.sourceforge.net/api/pyplot_api.html#matplotlib.pyplot.imshow
or in interactive help.


On Sun, 2011-04-17 at 23:16 +0200, Paolo Zaffino wrote:
> Thanks for the reply.
> I checked in the help...I didn't understand what I must to use.
> Should you post me the link of the guide of this setting?
> Thanks!
> 
> 
> Il 16/04/2011 10:47, Sebastian Berg ha scritto:
> > Hello,
> >
> > check the help ;). you can set aspect='auto' or something fixed.
> >
> > Regards,
> >
> > Sebastian
> >
> > On Sat, 2011-04-16 at 10:43 +0200, Paolo Zaffino wrote:
> >> Hi at all,
> >> I have a numpy matrix (an image) and I'd like to show it.
> >> I thought to use show function, but I have a question.
> >> I don't want that the pixel have dimension 1x1 unit but I want for
> >> example 1X1.5 unit (I don't want a square but a rectangle).
> >> How can I do this?
> >> Thanks in advance.
> >> Paolo
> >>
> >> ------------------------------------------------------------------------------
> >> Benefiting from Server Virtualization: Beyond Initial Workload
> >> Consolidation -- Increasing the use of server virtualization is a top
> >> priority.Virtualization can reduce costs, simplify management, and improve
> >> application availability and disaster protection. Learn more about boosting
> >> the value of server virtualization. http://p.sf.net/sfu/vmware-sfdev2dev
> >> _______________________________________________
> >> Matplotlib-users mailing list
> >> Matplotlib-users@lists.sourceforge.net
> >> https://lists.sourceforge.net/lists/listinfo/matplotlib-users
> >>
> >
> >
> > ------------------------------------------------------------------------------
> > Benefiting from Server Virtualization: Beyond Initial Workload
> > Consolidation -- Increasing the use of server virtualization is a top
> > priority.Virtualization can reduce costs, simplify management, and improve
> > application availability and disaster protection. Learn more about boosting
> > the value of server virtualization. http://p.sf.net/sfu/vmware-sfdev2dev
> > _______________________________________________
> > Matplotlib-users mailing list
> > Matplotlib-users@lists.sourceforge.net
> > https://lists.sourceforge.net/lists/listinfo/matplotlib-users
> >
> 
> 
> ------------------------------------------------------------------------------
> Benefiting from Server Virtualization: Beyond Initial Workload 
> Consolidation -- Increasing the use of server virtualization is a top
> priority.Virtualization can reduce costs, simplify management, and improve 
> application availability and disaster protection. Learn more about boosting 
> the value of server virtualization. http://p.sf.net/sfu/vmware-sfdev2dev
> _______________________________________________
> Matplotlib-users mailing list
> Matplotlib-users@lists.sourceforge.net
> https://lists.sourceforge.net/lists/listinfo/matplotlib-users
> 



------------------------------------------------------------------------------
Benefiting from Server Virtualization: Beyond Initial Workload 
Consolidation -- Increasing the use of server virtualization is a top
priority.Virtualization can reduce costs, simplify management, and improve 
application availability and disaster protection. Learn more about boosting 
the value of server virtualization. http://p.sf.net/sfu/vmware-sfdev2dev
_______________________________________________
Matplotlib-users mailing list
Matplotlib-users@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/matplotlib-users

Reply via email to