On 04/18/2011 06:07 AM, Muffles wrote:
>
> Ive seen lots of examples around, but i cant seem to adapt any to my
> implementation.
> The only thing i want is to change what values the colorbar shows. In the
> colorbar there are values from 1 to 1e+9, and im only interested in the
> values from 1e+4 to 1e+9...
>
> pc = ax.pcolor(pr[2].transpose(),norm=LogNorm(vmin=1),cmap=cm.jet)

Have you tried using vmin=1e4 above?

>
> ax.set_yticks(np.arange(0-(arr_agl[0]*escala)/1000,
> (arr_agl[600]*escala)/1000, escala))
> ax.set_yticklabels(range(20))
>
> ax.set_ylim(0, 600)
> ax.set_xlim(0,len(valores2))
> ax.xaxis.LABELPAD = 18
>
> for label in ax.get_xticklabels() + ax.get_yticklabels():
>        label.set_fontsize(16)
>
> plt.xlabel('Time of Measurement',fontsize=16)
> plt.ylabel('HEIGHT above ground level, km',fontsize=16)
>
> colorbar = fig.colorbar(pc)

With the suggested change to vmin, you might want to use the colorbar 
kwarg extend='min'.

Eric

>
> Thx...


------------------------------------------------------------------------------
Benefiting from Server Virtualization: Beyond Initial Workload 
Consolidation -- Increasing the use of server virtualization is a top
priority.Virtualization can reduce costs, simplify management, and improve 
application availability and disaster protection. Learn more about boosting 
the value of server virtualization. http://p.sf.net/sfu/vmware-sfdev2dev
_______________________________________________
Matplotlib-users mailing list
Matplotlib-users@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/matplotlib-users

Reply via email to