hello, im currently working on data analysis with matplotlib/numpy/scipy, my programm plots data with plot() and waits for input commands via __call__ with the x key it is possible to save data points and plot them into the figure, the r key can be used to remove points from data/figure,.
the programm works quite good so far, except if i want to remove a data point, i turned of self.dataplot.set_autoscale_on(False), to avoid that there is a zoom out when i save/remove data points. the problem is that this just works if i save an new point, if i want to remove a point via "r" the figure zooms out each time altough the autoscale is on False .... here a short part of my source code: def __call__(self, event): if event.key == "x": self.x.append(event.xdata) self.y.append(event.ydata) self.N = self.N + 1 plt.axvline(event.xdata, ymin=0, ymax=600, linestyle="--") rest = event.xdata % 4.0e-7 index = int((event.xdata-rest)/4.0e-7-1) plt.plot(self.time[index],self.temp[index],'g^') self.history.append(False) if (self.N%2 == 0) and self.N <17: p1, p2 = self.x[len(self.x)-2],self.x[len(self.x)-1] if p1>p2: p1, p2 = p2, p1 self.lgdata.append(self.linreg(p1,p2,self.messdaten)) lgx=np.arange(p1-0.001,p2+0.001,0.001) ram=len(self.lgdata)-1 plt.plot(lgx,self.lgdata[ram][0]*lgx+self.lgdata[ram][1],'r-') self.history.append(True) plt.xlabel('N = '+str(self.N)) plt.draw() elif event.key == "r": if (self.remove == True) or (self.N>16): if self.history[len(self.history)-1]==True: self.lgdata.pop() del self.dataplot.lines[len(self.dataplot.lines)-1] elif self.history[len(self.history)-1]==False: self.x.pop() self.y.pop() self.N = self.N-1 plt.xlabel('N = '+str(self.N)) del self.dataplot.lines[len(self.dataplot.lines)-1] del self.dataplot.lines[len(self.dataplot.lines)-1] self.history.pop() plt.xlabel('N = '+str(self.N)) plt.draw() i hope somebody can help me -- View this message in context: http://old.nabble.com/matplot-zoomout-draw%28%29-tp31769233p31769233.html Sent from the matplotlib - users mailing list archive at Nabble.com. ------------------------------------------------------------------------------ Simplify data backup and recovery for your virtual environment with vRanger. Installation's a snap, and flexible recovery options mean your data is safe, secure and there when you need it. Discover what all the cheering's about. Get your free trial download today. http://p.sf.net/sfu/quest-dev2dev2 _______________________________________________ Matplotlib-users mailing list Matplotlib-users@lists.sourceforge.net https://lists.sourceforge.net/lists/listinfo/matplotlib-users