Hi, have you tried the examples that I have provided a couple days ago, see below? I cannot see why it should not work. These are the absolute basics that you need to understand.
Btw, there is no need to use csv2rec unless you want/need column or row headers. Here's a full script that does what you want. Now, please take the time and work through the example that I have provided. In case you need further help, please don't start a new thread but reply to this one. Best regards, Daniel # -*- coding: utf-8 -*- import matplotlib.pyplot as plt import pylab import scipy datafile1 = 'ch1_s1_lrr.csv' datafile2 = 'ch1_s1_baf.csv' ## create dummy data data = pylab.rand(10000,12) pylab.savetxt(datafile1, data, delimiter=';') pylab.savetxt(datafile2, data, delimiter=';') ## load data and transpose a1 = pylab.loadtxt(datafile1, comments='#', delimiter=';').T print 'loading', datafile1 b1 = pylab.loadtxt(datafile2, comments='#', delimiter=';').T print 'loading', datafile2 ## axis limits #v1 = [0,98760,0,1] #v2 = [0,98760,-2,2] v1 = [0,1] v2 = [-2,2] plt.close('all') plt.figure() plt.subplot(2,1,1) #plt.axis(v2) plt.ylim(v2) #plt.plot(a1, 'r.') for i in range(6): plt.plot(a1[i]) plt.subplot(2,1,2) #plt.axis(v1) plt.ylim(v1) #plt.plot(b1, 'b.') ## need masked arrays here ## http://physics.nmt.edu/~raymond/software/python_notes/paper003.html m = b1 >= 0.05 b1masked = scipy.ma.array(b1,mask=m) ## print first two cols print b1masked[0:2] for i in range(6,12): plt.plot(b1masked[i]) plt.show() 2011/6/3 Karthikraja Velmurugan <velmurugan.karthikr...@gmail.com>: > import matplotlib.pyplot as plt > import pylab > datafile1 = 'ch1_s1_lrr.csv' > datafile2 = 'ch1_s1_baf.csv' > > a1 = pylab.loadtxt(datafile1, comments='#', delimiter=';') > b1 = pylab.loadtxt(datafile2, comments='#', delimiter=';') > > v1 = [0,98760,0,1] > v2 = [0,98760,-2,2] > > plt.figure(1) > > plt.subplot(2,1,1) > print 'loading', datafile1 > plt.axis(v2) > plt.plot(a1, 'r.') > > plt.subplot(2,1,2) > print 'loading', datafile2 > plt.axis(v1) > plt.plot(b1, 'b.') > > plt.show() 2011/5/30 Daniel Mader <danielstefanma...@googlemail.com>: > Hi, > > the content of the CSV is stored as an array after reading. You can > simply access rows and columns like in Matlab: > > firstrow = a1[0] > firstcol = a1.T[0] > > The .T transposes the array. > > The second element of the third row would be > > elem32 = a1[2][1] > which is equivalent to > elem32 = a1[2,1] > > A range of e.g. rows 3 to 6 is > range36 = a1[2:6] > > Please have a look here for getting started with scipy/numpy: > http://pages.physics.cornell.edu/~myers/teaching/ComputationalMethods/python/arrays.html > and > http://www.scipy.org/NumPy_for_Matlab_Users > > Hope this helps, > Daniel > > 2011/5/27 Karthikraja Velmurugan <velmurugan.karthikr...@gmail.com>: >> Hello Daniel, >> >> The code you have given is simple and works fab. Thank you very much. But I >> wasn't able to find an example which accesses the columns of a CSV files >> when I import data through "datafile="filename.csv"" option. It will be >> great if you could help with accessing individual columns. What excatly I am >> looking for is to access individual coulmns (of the same CSV file), do >> calculations using the two coumnsĀ and plot them into seperate subplots of >> the same graph. >> I modified the script a lil bit. Please find it below: >> >> import matplotlib.pyplot as plt >> import pylab >> datafile1 = 'ch1_s1_lrr.csv' >> datafile2 = 'ch1_s1_baf.csv' >> a1 = pylab.loadtxt(datafile1, comments='#', delimiter=';') >> b1 = pylab.loadtxt(datafile2, comments='#', delimiter=';') >> v1 = [0,98760,0,1] >> v2 = [0,98760,-2,2] >> plt.figure(1) >> plt.subplot(4,1,1) >> print 'loading', datafile1 >> plt.axis(v2) >> plt.plot(a1, 'r.') >> plt.subplot(4,1,2) >> print 'loading', datafile2 >> plt.axis(v1) >> plt.plot(b1, 'b.') >> plt.show() >> >> Thank you very much in advance for your time and suggestions. >> >> Karthik ------------------------------------------------------------------------------ Simplify data backup and recovery for your virtual environment with vRanger. Installation's a snap, and flexible recovery options mean your data is safe, secure and there when you need it. Discover what all the cheering's about. Get your free trial download today. http://p.sf.net/sfu/quest-dev2dev2 _______________________________________________ Matplotlib-users mailing list Matplotlib-users@lists.sourceforge.net https://lists.sourceforge.net/lists/listinfo/matplotlib-users