Try tricontourf; I've attached an example. Most of the example code is manipulating your input data and calculating the connectivity of your grid.
I hope this helps, Ian Thomas
import matplotlib.pyplot as plt import numpy as np x,y1,y2,y3,y4,stress = np.loadtxt('data.txt', skiprows=2, delimiter=',', unpack=True) # Arrays of all the point coordinates and stresses. n = len(x) x = np.hstack((x,x,x,x)) y = np.hstack((y1,y2,y3,y4)) stress = np.hstack((stress,stress,stress,stress)) # Triangle connectivity. triangles = [] for i in range(n-1): triangles.append([i,i+1,n+i]) triangles.append([i+1,n+i+1,n+i]) triangles.append([2*n+i,2*n+i+1,3*n+i]) triangles.append([2*n+i+1,3*n+i+1,3*n+i]) # Plot. plt.tricontourf(x, y, triangles, stress) plt.colorbar() plt.show()
<<attachment: test.png>>
------------------------------------------------------------------------------ All of the data generated in your IT infrastructure is seriously valuable. Why? It contains a definitive record of application performance, security threats, fraudulent activity, and more. Splunk takes this data and makes sense of it. IT sense. And common sense. http://p.sf.net/sfu/splunk-d2d-c2
_______________________________________________ Matplotlib-users mailing list Matplotlib-users@lists.sourceforge.net https://lists.sourceforge.net/lists/listinfo/matplotlib-users