A bit of searching gave me this much simpler solution:

import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import datetime
import matplotlib.dates as m_dates
import matplotlib.ticker as ticker

def make_month_axis(dates, y, ax, fig):

    newax = fig.add_axes(ax.get_position())
    newax.spines['bottom'].set_position(('outward', 25))
    newax.patch.set_visible(False)
    newax.yaxis.set_visible(False)
    newax.plot_date(dates, y, visible=False)

    newax.xaxis.set_major_locator(m_dates.MonthLocator())
    newax.xaxis.set_minor_locator(m_dates.MonthLocator(bymonthday=15))

    newax.xaxis.set_major_formatter(ticker.NullFormatter())
    newax.xaxis.set_minor_formatter(m_dates.DateFormatter('%b'))

    for tick in newax.xaxis.get_minor_ticks():
        tick.tick1line.set_markersize(0)
        tick.tick2line.set_markersize(0)
        tick.label1.set_horizontalalignment('center')


start = datetime.datetime(2012, 8, 26)
dates = [start]
for i in range(1,10):
    dates.append(dates[-1] + datetime.timedelta(days=7))
y = np.random.normal(10, 5, len(dates))
fig = plt.figure()
fig.subplots_adjust(bottom=0.2, right=0.85, wspace=.8, hspace=.8)
ax = fig.add_subplot(1,1,1)
ax.plot(dates, y)
ax.xaxis.set_major_formatter( matplotlib.dates.DateFormatter('%W'))
make_month_axis(dates = dates, y = y, ax = ax, fig = fig)

plt.show()

Paul



On 10/8/12 11:03 PM, Paul Tremblay wrote:
I often have to make graphs with time series, with each point being the start of a week. Below is the result I wish:

However, in order to make the secondary x axis the the month labels, I need something like 40 lines of code. My strategy consists in first drawing the rates in the normal way and using matplotlib's dateFormatter to set the week numbers. That part is easy.

In order to draw the x axis below to show when the weeks occur, I draw two more lines, and makes these lines invisible. The first line has as the x points the start of each month, and the y values as the corresponding rate. The second line has as its x value the middle of each month, with the corresponding y value.

Below is my code. I have to use such a graph quite often--so often, in fact, that if I don't find an easier way to make the secondary x axis, I will store the code in my own library for re-use. Does anyone know of a simpler, more elegant way?

Thanks!

Paul

import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.dates
from datetime import datetime
from datetime import timedelta


def unique_months(dates, rates):
    """
    returns two lists, one of the first time a month occurs, the second, the
    rates representing that month

    """
    y = [rates[0]]
    temp = dates[0] - timedelta(days=dates[0].day)
    months = [temp]
    found = [dates[0].month]
    counter = 0
    for  d in dates:
        month = d.month
        if month not in found:
            new_date = d - timedelta(days=d.day)
            months.append(new_date)
            y.append(rates[counter])
            found.append(month)
        counter += 1
    return (months, y)

def half_months(dates, defects):
    """
    returns two lists, one the middle of the month occurs, the second, the
    rates representing that month

    """
    months, y = unique_months(dates, defects)
    new_months =[]
    new_y = []
    counter = 0
    for m in months:
        new_date = m - timedelta(days=m.day) + timedelta(days=15)
        if new_date <= months[-1]:
            new_months.append(new_date)
            new_y.append(y[counter])
        counter += 1
    return new_months, new_y

dates = [datetime(2012,8,19), datetime(2012,8,26),datetime(2012, 9, 3), datetime(2012,9,10), datetime(2012,9,17), datetime(2012,9,24),
        datetime(2012,10,1), datetime(2012,10,8)]
rates = [2,3,4,2,5,3,7,2]
fig = plt.figure()
fig.set_size_inches(3,3)
x1, y1 = unique_months(dates, rates)
ax = fig.add_subplot(1,1,1)
ax.yaxis.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.5)
ax.set_axisbelow(True)
fig.subplots_adjust(bottom=0.2, right=0.85, wspace=.8, hspace=.8)
# plot dates and rates
ax.plot(dates, rates)
ax.xaxis.set_major_formatter(matplotlib.dates.DateFormatter('%W'))

# start with bottom axis

x2, y2 = half_months(dates, rates)

# add tick marks for start of month
# x1 starts at first of each mont; y1 doesn't matter
newax = fig.add_axes(ax.get_position())
newax.spines['bottom'].set_position(('outward', 25))
newax.patch.set_visible(False)
newax.yaxis.set_visible(False)
newax.plot_date(x1, y1,  visible=False)
newax.xaxis.set_major_locator( matplotlib.dates.MonthLocator())
newax.set_xticklabels([])

# set labels for months, inbetween tick marsk
# x2 is 15th of each month
axmlab = fig.add_axes(ax.get_position())
axmlab.spines['bottom'].set_position(('outward', 25))
axmlab.patch.set_visible(False)
axmlab.yaxis.set_visible(False)
axmlab.plot_date(x2, y2,  visible=False)
axmlab.xaxis.set_major_formatter( matplotlib.dates.DateFormatter('%b'))
axmlab.xaxis.set_major_locator(matplotlib.dates.DayLocator(bymonthday=1))
# get rid of tick marks for this axis
for i, line in enumerate(axmlab.get_xticklines() + newax.get_yticklines()):
    line.set_visible(False)
axmlab.plot_date(x2, y2,  visible=False)
axmlab.xaxis.set_major_locator( matplotlib.dates.MonthLocator())

plt.xlabel('Week in Year')
ax.set_ylabel('Rates')
plt.savefig('temp.png', dpi=100)



------------------------------------------------------------------------------
Don't let slow site performance ruin your business. Deploy New Relic APM
Deploy New Relic app performance management and know exactly
what is happening inside your Ruby, Python, PHP, Java, and .NET app
Try New Relic at no cost today and get our sweet Data Nerd shirt too!
http://p.sf.net/sfu/newrelic-dev2dev
_______________________________________________
Matplotlib-users mailing list
Matplotlib-users@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/matplotlib-users

Reply via email to