On 2013/01/26 5:33 PM, Todamont wrote:
> This is the relevant code:

Thanks, but what would really help is not what you think is the relevant 
code, but a completely self-contained *minimal* script, so that I can 
run it as-is, then modify it (probably only slightly), and return the 
modified version.

I suspect that using plot_date and a few fake data points, you can 
reproduce the problem.  I doubt that it matters whether you use pyplot 
with an interactive backend, or use the OO form with FigureCanvasAgg.

Eric


>
> import sys, shutil
> import matplotlib
> from matplotlib.figure import Figure
> from matplotlib.backends.backend_agg import FigureCanvasAgg
> from mhd_scipy import load_mhd
> from datetime import datetime
> import matplotlib.dates as dates
> import matplotlib.pyplot as plt
> import numpy as np
> import matplotlib.font_manager
> from matplotlib.ticker import ScalarFormatter, FormatStrFormatter,
> FuncFormatter
>
> ...
>
>     fig=Figure(figsize=(5.5,2.4))
>     pl=fig.add_subplot(111)
>
> pl.plot_date(zip(graphdate),zip(price),'-',color='white',lw='0.5',alpha=0.25)
>     pl.set_ylim([min(price),max(price)])
>     ax2=pl.twinx()
>     ax2.set_ylim([min(price),max(price)])
>
> # here is my attempt to force NON-SCIENTIFIC axes
>     formatter = ScalarFormatter()
>     formatter.set_scientific(False)
>     formatter.set_powerlimits((-1000000000,10000))
>     pl.yaxis.set_major_formatter(FuncFormatter(lambda x, pos: '%.0f'%x))
>     pl.yaxis.set_major_formatter(formatter)
>     pl.yaxis.set_minor_formatter(FuncFormatter(lambda x, pos: '%.0f'%x))
>     pl.yaxis.set_minor_formatter(formatter)
>     pl.set_autoscaley_on(False)
>     yfm = pl.yaxis.get_major_formatter()
>     yfm.set_powerlimits([ -100000000000, 10000])
>
> #finally, render...
>     canvas=FigureCanvasAgg(fig)   bigName = pyArgs[4] + "_big.png"   # create
> image name string..
>     canvas.print_figure(bigName,dpi=200)       # create date/timestamped file
>     print "Large line-graph Created"
>
>
> So, if I pass this thing price data that includes only 1 trade, or just a
> few trades that are within a cent or two of each other, that's when the
> bizarre axis scaling happens...
>
>
>
>
>
>
> --
> View this message in context: 
> http://matplotlib.1069221.n5.nabble.com/Matplotlib-INSISTS-on-using-scientific-notation-how-do-I-make-it-STOP-tp40320p40322.html
> Sent from the matplotlib - users mailing list archive at Nabble.com.
>
> ------------------------------------------------------------------------------
> Master Visual Studio, SharePoint, SQL, ASP.NET, C# 2012, HTML5, CSS,
> MVC, Windows 8 Apps, JavaScript and much more. Keep your skills current
> with LearnDevNow - 3,200 step-by-step video tutorials by Microsoft
> MVPs and experts. ON SALE this month only -- learn more at:
> http://p.sf.net/sfu/learnnow-d2d
> _______________________________________________
> Matplotlib-users mailing list
> Matplotlib-users@lists.sourceforge.net
> https://lists.sourceforge.net/lists/listinfo/matplotlib-users
>


------------------------------------------------------------------------------
Master Visual Studio, SharePoint, SQL, ASP.NET, C# 2012, HTML5, CSS,
MVC, Windows 8 Apps, JavaScript and much more. Keep your skills current
with LearnDevNow - 3,200 step-by-step video tutorials by Microsoft
MVPs and experts. ON SALE this month only -- learn more at:
http://p.sf.net/sfu/learnnow-d2d
_______________________________________________
Matplotlib-users mailing list
Matplotlib-users@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/matplotlib-users

Reply via email to