Hi All,
To follow up on my own post - because my curtains and contours were
well-ordered, I simply set the "zorder" on each call and got the right effect.
Thanks, Jody
On Sep 25, 2013, at 15:15 PM, Jody Klymak <jkly...@uvic.ca> wrote:
>
> Hi all,
>
> I am trying to make 3-D "curtain" plots. Basically, x,y are N-vectors, z is
> an M-vector, and C is MxN data set collected on the path with z. Application
> is a ship's track through the ocean. I also want to be able to contour a
> second variable C2 also MxN. I know how to do that, but the example below
> just uses plot3D, because thats how I do the curtain contouring.
>
> If I plot three such "curtains" they look OK, including the magenta line in
> each.
>
> If I plot a fourth, the magenta line is obscured by the curtain, and so on
> for more curtains.
>
> <bad3dslices.png>
>
> Any clue what the problem is? The code for this example is below, and I think
> is self contained, plus or minus running in pylab.
>
> Thanks, Jody
>
> from mpl_toolkits.mplot3d import Axes3D
> from matplotlib import cm
> import matplotlib.pyplot as plt
> import numpy as np
>
> n=0
> fig = figure()
> for Nn in array([3,4]):
> n=n+1
> ax = fig.add_subplot(2,1,n,projection='3d')
> for off in arange(0,Nn*2,2)*50.:
>
> x = np.arange(-5, 5, .5)
> y = np.arange(-5, 5, .5)
> Z = np.arange(0,200,1)
> Z=np.tile(np.reshape(Z,(200,1)),(1,size(y)))
> X = np.tile(y,(200,1))
> Y = np.tile(y,(200,1))
>
> N = X*Y*Z
> N = N/N.max() # normalize 0..1
> surf = ax.plot_surface(
> X+off, Y, Z, rstride=20, cstride=4,
> facecolors=cm.jet(N),
> linewidth=0, antialiased=False, shade=False,alpha=0.9)
> ax.plot(x+off+0.001,y,(y+5)*25.,'m')
> ax.set_xlim([-50,350])
> ax.set_ylim([-8.,8.])
> fig.savefig('doc/bad3dslices.png',res=72)
>
> --
> Jody Klymak
> http://web.uvic.ca/~jklymak/
>
>
>
>
> ------------------------------------------------------------------------------
> October Webinars: Code for Performance
> Free Intel webinars can help you accelerate application performance.
> Explore tips for MPI, OpenMP, advanced profiling, and more. Get the most from
> the latest Intel processors and coprocessors. See abstracts and register >
> http://pubads.g.doubleclick.net/gampad/clk?id=60133471&iu=/4140/ostg.clktrk_______________________________________________
> Matplotlib-users mailing list
> Matplotlib-users@lists.sourceforge.net
> https://lists.sourceforge.net/lists/listinfo/matplotlib-users
--
Jody Klymak
http://web.uvic.ca/~jklymak/
------------------------------------------------------------------------------
October Webinars: Code for Performance
Free Intel webinars can help you accelerate application performance.
Explore tips for MPI, OpenMP, advanced profiling, and more. Get the most from
the latest Intel processors and coprocessors. See abstracts and register >
http://pubads.g.doubleclick.net/gampad/clk?id=60133471&iu=/4140/ostg.clktrk
_______________________________________________
Matplotlib-users mailing list
Matplotlib-users@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/matplotlib-users