> Date: Tue, 1 Oct 2013 19:35:39 +0200
> Subject: Re: [Matplotlib-users] x axis non-uniform labeling (KURT PETERS)
> From: goyod...@gmail.com
> To: petersk...@msn.com
> CC: pmhob...@gmail.com; matplotlib-users@lists.sourceforge.net
> 
> 2013/10/1 KURT PETERS <petersk...@msn.com>:
> > here's what SHOULD be happening
> >
> >     | 0   1   5  9 13 18 21 24 25 28
> >  3 |                     x
> >     |                x          x
> >     |           x                    x
> >     |       x                             x
> > -1|_x__________________x_____
> >        1    2  3   4  5    6   7   8   9  10
> >
> > How can I make that happen?  Instead, MPL is autoranging the top axis.  I
> > don't want that   I just want the actual labels to occur up there.
> 
> Then just set the ticks and the tick labels of the axis:
> 
> import numpy as np
> import matplotlib.pyplot as plt
> xdat=np.arange(1,11)
> simtimedata = np.array([0, 1, 5, 9, 13, 18, 21, 24, 25, 28])
> idatanp = np.array([-1,0, 1, 2, 3, 2, 1, 0, -1, -2])
> ax1 = plt.subplot(111)
> ax1.plot(xdat,idatanp)
> ax2 = ax1.twiny()
> ax2.set_xticks(range(len(xdat)))
> ax2.set_xticklabels(simtimedata)
> plt.show()
> 
> Goyo
 Goyo,  Thanks, the code below seems to work.  The problem is that with 
"REAL/actual" data, I have SO many data points that each point is now labeled 
and it takes forever to render.  And when it does render, I cannot read the 
axis because there are too many there.  Is there a way to judiciously have it 
only display a certain number of values?  Such as every 100th 
value?Kurtxdat=np.arange(1,11)
simtimedata = np.array([0, 1, 5, 9, 13, 18, 21, 24, 25, 28])
idatanp = np.array([-1,0, 1, 2, 3, 2, 1, 0, -1, -2])
print idatanp.shape
print simtimedata.shape
print xdat.shape
fig = plt.figure()
ax1 = fig.add_subplot(211)
ax1.plot(xdat,idatanp)
ax1.grid(True)
ax2 = fig.add_subplot(212)
ax2.plot(xdat, idatanp.real,'k-o')
ax2.set_xticks(xdat)
ax2.set_xticklabels(simtimedata)
#ax2.set_title("time domain")
ax2.grid(True)
plt.show()                                        
------------------------------------------------------------------------------
October Webinars: Code for Performance
Free Intel webinars can help you accelerate application performance.
Explore tips for MPI, OpenMP, advanced profiling, and more. Get the most from 
the latest Intel processors and coprocessors. See abstracts and register >
http://pubads.g.doubleclick.net/gampad/clk?id=60134791&iu=/4140/ostg.clktrk
_______________________________________________
Matplotlib-users mailing list
Matplotlib-users@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/matplotlib-users

Reply via email to