Nils,
Here is a version that runs through. It produces two different versions of
your graph: one with the colors corresponding to the index of the arrays, the
other with the colors corresponding to the value of the histogram. I hope this
helps.
-Sterling
{{{
import re
import os
import sys
import gzip
import numpy as np
import matplotlib.pyplot as plt
import glob
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.colors as colors
import matplotlib.cm as cmx
efratio = np.loadtxt('efratio-10.dat.gz')
hist,bin_edges = np.histogram(efratio,bins=100,range=(0.,1.),density=False)
width = 0.7*(bin_edges[1]-bin_edges[0])
center = (bin_edges[:-1]+bin_edges[1:])/2
coolwarm = cm = plt.get_cmap('coolwarm')
values = range(100)
for normed in [values,hist]:
cNorm = colors.Normalize(vmin=0, vmax=max(normed))
scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=coolwarm)
colours = []
for value in normed:
colorVal = scalarMap.to_rgba(value)
colours.append(colorVal)
fig = plt.figure()
ax = fig.add_subplot(111,projection='3d')
heatmap = ax.bar(center, hist, zs=1, zdir='y', align = 'center', width =
width,color=colours,linewidth=0)
scalarMap.set_array(normed)
plt.colorbar(scalarMap,ax=ax)
plt.show()
}}}
On Oct 14, 2013, at 6:12AM, Nils Wagner wrote:
> Here is a self contained version.
>
> Nils
>
>
>
>
> On Fri, Oct 11, 2013 at 4:33 PM, Sterling Smith <[email protected]>
> wrote:
> Nils,
>
> I tried to run your example, but there are some variables which are
> undefined. Can you post a self contained revision of your example?
>
> -Sterling
>
> On Oct 11, 2013, at 1:34AM, Nils Wagner wrote:
>
> > plt.colorbar(scalarMap,ax=ax) results in
> >
> > cm.py", line 309, in autoscale_None
> > raise TypeError('You must first set_array for mappable')
> > TypeError: You must first set_array for mappable
> >
> > Nils
> >
> >
> >
> > On Fri, Oct 11, 2013 at 9:51 AM, Eric Firing <[email protected]> wrote:
> > On 2013/10/10 8:52 PM, Nils Wagner wrote:
> > > Hi all,
> > >
> > > I tried to add a colorbar to a bar plot
> > >
> > > coolwarm = cm = plt.get_cmap('coolwarm')
> > > values = range(100)
> > > cNorm = colors.Normalize(vmin=0, vmax=values[-1])
> > > scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=coolwarm)
> > > colours = []
> > > for value in values:
> > > colorVal = scalarMap.to_rgba(value)
> > > colours.append(colorVal)
> > >
> > > fig = plt.figure()
> > > ax = fig.add_subplot(111,projection='3d')
> > > hist,bin_edges =
> > > np.histogram(efratio,bins=100,range=(0.,1.),density=False)
> > > width = 0.7*(bin_edges[1]-bin_edges[0])
> > > center = (bin_edges[:-1]+bin_edges[1:])/2
> > > heatmap = ax.bar(center, hist, zs=z, zdir='y', align = 'center', width =
> > > width,color=colours)
> > > plt.colorbar(heatmap)
> > >
> > >
> > >
> > >
> > >
> > > mappable.autoscale_None() # Ensure mappable.norm.vmin, vmax
> > > AttributeError: 'BarContainer' object has no attribute 'autoscale_None'
> >
> > This is because it is not an instance of ScalarMappable, which is what
> > colorbar() requires as its argument.
> > >
> > > How can I fix the problem ?
> >
> > Use scalarMap as the argument instead of heatmap. I think you will need
> > to provide either the cax or the ax kwarg in addition.
> >
> > examples/api/colorbar_only.py might also be helpful.
> >
> > Eric
> > >
> > > Nils
> > >
> > >
> > >
> > > ------------------------------------------------------------------------------
> > > October Webinars: Code for Performance
> > > Free Intel webinars can help you accelerate application performance.
> > > Explore tips for MPI, OpenMP, advanced profiling, and more. Get the most
> > > from
> > > the latest Intel processors and coprocessors. See abstracts and register >
> > > http://pubads.g.doubleclick.net/gampad/clk?id=60134071&iu=/4140/ostg.clktrk
> > >
> > >
> > >
> > > _______________________________________________
> > > Matplotlib-users mailing list
> > > [email protected]
> > > https://lists.sourceforge.net/lists/listinfo/matplotlib-users
> > >
> >
> >
> > ------------------------------------------------------------------------------
> > October Webinars: Code for Performance
> > Free Intel webinars can help you accelerate application performance.
> > Explore tips for MPI, OpenMP, advanced profiling, and more. Get the most
> > from
> > the latest Intel processors and coprocessors. See abstracts and register >
> > http://pubads.g.doubleclick.net/gampad/clk?id=60134071&iu=/4140/ostg.clktrk
> > _______________________________________________
> > Matplotlib-users mailing list
> > [email protected]
> > https://lists.sourceforge.net/lists/listinfo/matplotlib-users
> >
> > ------------------------------------------------------------------------------
> > October Webinars: Code for Performance
> > Free Intel webinars can help you accelerate application performance.
> > Explore tips for MPI, OpenMP, advanced profiling, and more. Get the most
> > from
> > the latest Intel processors and coprocessors. See abstracts and register >
> > http://pubads.g.doubleclick.net/gampad/clk?id=60134071&iu=/4140/ostg.clktrk_______________________________________________
> > Matplotlib-users mailing list
> > [email protected]
> > https://lists.sourceforge.net/lists/listinfo/matplotlib-users
>
>
> <efratio-9.dat.gz><test.py>
------------------------------------------------------------------------------
October Webinars: Code for Performance
Free Intel webinars can help you accelerate application performance.
Explore tips for MPI, OpenMP, advanced profiling, and more. Get the most from
the latest Intel processors and coprocessors. See abstracts and register >
http://pubads.g.doubleclick.net/gampad/clk?id=60135031&iu=/4140/ostg.clktrk
_______________________________________________
Matplotlib-users mailing list
[email protected]
https://lists.sourceforge.net/lists/listinfo/matplotlib-users