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Abstract

This paper proposes an improved method to study distribution network reconfiguration (DNRC) based on a refined genetic

algorithm (GA). The DNRC model, in which the objective is to minimize the system power loss, is set up. In order to get the precise

branch current and system power loss, a radiation distribution network load flow (RDNLF) method is presented in the study. The

refined genetic algorithm is also set up, in which some improvements are made on chromosome coding, fitness function and

mutation pattern. As a result, premature convergence is avoided. The proposed approach is tested on 16-bus and 33-bus distribution

networks. Study results are given in the paper. # 2002 Elsevier Science B.V. All rights reserved.

Keywords: Optimization; Artificial intelligence; Genetic algorithms; Distribution systems; Network reconfiguration

1. Introduction

It is known that distribution networks are built as

interconnected meshed networks, while in the operation

they are arranged into a radial tree structure. This

means that distribution systems are divided into sub-

systems of radial feeders, which contain a number of

normally-closed switches and a number of normally-

open switches. From graph theory, a distribution net-

work can be represented with a graph of G (N , B ) that

contains a set of nodes N and a set of branches B . Every

node represents either a source node (supply transfor-

mer) or a sink node (customer load point), while a

branch represents a feeder section that can either be

loaded (switch closed) or unloaded (switch open). The

network is radial, so that feeder sections form a set of

trees where each sink node is supplied from exactly one

source node. Therefore, the distribution network recon-

figuration (DNRC) problem is to find a radial operating

structure that minimizes the system power loss while

satisfying operating constraints. In fact, this problem

can be viewed as a problem of determining an optimal

tree of the given graph. However, real distribution

systems contain many nodes and branches (and

switches), and the total number of trees is extremely

large. Ordinary optimization methods have shown to be

ineffective and impractical to this problem [1].

Merlin et al. proposed a heuristic approach to the

DNRC problem [2]. It begins with all branches closed (a

complete graph) and performs a procedure of opening

branches which carry the least current. This method is a

greedy algorithm that does not necessarily guarantee

feasibility of the final solution.

Nahman et al. presented another heuristic approach

in [3,4]. The algorithm starts from a completely empty

network, with all switches open and all loads discon-

nected. Load points are connected one by one by

switching branches onto the current subtree. The search

technique also does not necessarily guarantee global

optima.

Recently, the branch exchange approach has been

used in research on DNRC [5�/7]. In fact, this is a

gradient method in the space of a graph structure. In

this method, one normally-open switch is closed, which

forms a loop and violates the topological constraints.

When a closed branch (or switch) in the loop opens, a

new topology is produced. However, the existing branch

exchange based algorithms are capable of finding only

local optima, where the final solution heavily depends

on the starting configuration.E-mail address: jizhong.zhu@esca.com (J.Z. Zhu).
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At present, new methods based on artificial intelli-

gence have been used in DNRC [8,9]. Chiang et al. [8]

presented a simulated annealing (SA) method to solve

the DNRC problem, in which the SA was very time-

consuming. It is needed to apply the improved SA with

high speed to handle the DNRC problem. For the first

time, genetic algorithm (GA) was applied to the global

optimal solution of DNRC in [9], which has shown a

better performance over the SA approach. In this paper,

the GA method is further refined by modifying the

string structure and fitness function:

1) In Ref. [9], the string used in GA describes all the

switch positions and their ‘on/off’ states. The string

can be very long and it grows in proportion with the

number of switches. For large distribution systems,

such long strings can not be effectively searched by
GA. In this paper, the string will be shortened.

2) To reduce computational burden, approximate

fitness functions was used in GA to represent the

system power loss [9]. It may affect the accuracy and

effectiveness of GA. GA is essentially unconstrained

search procedures within the given represented

space [10�/12]. All information should be fully

represented in the fitness function. Over-approxi-
mated fitness function would lead directly to

unreliable solution.

In this paper, the DNRC model, in which the

objective is to minimize the system power loss, is set

up. Since the distribution network is a simple radial tree

structure, in which the ratio of R /X is relatively big,

even bigger than 1.0 for some transmission lines, neither

P �/Q decoupled method nor Newton�/Raphson method

is suited to compute the distribution network loadflow.

Therefore, a radiation distribution network loadflow

(RDNLF) method is presented in the study. In order to

enhance performance of GA, some improvements are

made on chromosome coding, fitness function and

mutation pattern. Among these improved features, an

adaptive process of mutation is developed not only to

prevent premature convergence, but also to produce

smooth convergence. The proposed approach is tested

with satisfactory results on 16-bus and 33-bus distribu-

tion networks.

2. Brief description of GA

GAs are effective parameter search techniques. They

are considered when conventional techniques have not

achieved the desired speed, accuracy or efficiency [10].

GAs are different from conventional optimization and

search procedures in the following ways [12].

1) GAs work with coding of parameters rather than

the parameters themselves.

2) GAs search from a population of points rather than

a single point.
3) GAs use only objective functions rather than

additional information such as their derivatives.

4) GAs use probabilistic transition rules, and not

deterministic rules.

These properties make GAs more robust, more

powerful and less data-independent than many other

conventional techniques.

The theoretical foundation for GAs was first de-

scribed by Holland [11], and was presented tutorially by

Goldberg [12]. GAs provide a solution to a problem by
working with a population of individuals each repre-

senting a possible solution. Each possible solution is

termed a ‘chromosome’. New points of the search space

are generated through GA operations, known as repro-

duction, crossover and mutation. These operations

consistently produce fitter offsprings through successive

generations, which rapidly lead the search towards

global optima [12].

3. Mathematical model of DNRC

The purpose of DNRC is to find a radial operating

structure that minimizes the system power loss while

satisfying operating constraints. Thus, the following

model can represent the DNRC problem.

Min f �Sb ½Ib½
2kbRb b�NL (1)

such that

kb½Ib½5Ibmax b�NL (2)

Vimin5Vi 5Vimax i�N (3)

gi(I ; k)�0 (4)

gv(V ; k)�0 (5)

8 (k)�0 (6)

where Ib is the current in branch b ; Rb is the resistance

of branch b. Vi is the node voltage at node i. kb

represents the topological status of the branches. kb �/1

if the branch b is closed, and kb �/0 if the branch b is
open. N is the set of nodes, and NL is the set of

branches. Subscripts ‘min’ and ‘max’ represent the lower

and upper bounds of the constraint.

In the above model, Eq. (2) stands for the branch

current thermal stability constraints. Eq. (3) stands for

the node voltage constraints. Eqs. (4) and (5) represent

Kirchhoff’s current and voltage laws. Eq. (6) stands for

topological constraints which ensure radial structure of
each candidate topology.

In order to get the precise expression of system power

loss, the current branch Ib , will be computed through a
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radiation distribution network loadflow (RDNLF)

method in the study. It is well known that in the

distribution network, the ratio of R /X (resistance/

reactance) is relatively big, even bigger than 1.0 for

some transmission lines. In this case, P �/Q decoupled

loadflow is invalid for distribution network load flow

calculation. It will also be complicated and time-

consuming to use the Newton�/Raphson loadflow
because the distribution network is only a simple radial

tree structure. Therefore, RDNLF method is presented

in the paper. RDNLF calculation consists of two parts.

One is calculation of branch current from the ‘top of a

tree’ node to the ‘root of a tree’ node. Another is the

calculation of node voltage from the ‘root of a tree’ node

to the ‘top of a tree node. The initial conditions are the

given voltage vectors at root nodes as well as real and
reactive power at load nodes. In final, the deviation of

injection power at all nodes can be computed. The

iteration calculation will be ceased if the deviation is less

than the given permissive error.

4. Refined GA approach to DNRC problem

Model M-1 may be solved by first generating all

graph trees and subsequently by performing evaluation.

However, real distribution systems contain many nodes

and branches, and many trees. Conventional optimiza-

tion methods have shown to be ineffective and imprac-

tical, because of dimensionality [1]. GAs has shown to

be an effective and useful approach for the DNRC
problem [9]. Some refinements of the approach are

described in this paper.

4.1. Genetic string

In Ref. [9], the string structure is expressed by ‘Arc

No.(i)’ and ‘SW. No.(i)’ for each switch i . ‘Arc No.(i)’
identifies the arc (branch) number that contains the i-th

open switch, and ‘SW. No.(i)’ identifies the switch that

is normally open on Arc No.(i ). For large distribution

networks, it is not efficient to represent every arc in the

string, since its length will be very long. In fact, the

number of open switch positions is identical to keep the

system radial once the topology of the distribution

networks is fixed, even if the open switch positions are

changed. Therefore, to memorize the radial configura-

tion, it is enough to number only the open switch

positions. Fig. 1 shows a simple distribution network
with five switches that are normally open.

In Fig. 1(a), positions of five initially-open switches 5,

8, 10, 13 and 14 determine a radial topology. In Fig.

1(b), positions of five initially-open switches 1, 4, 7, 9

and 10 determine another radial topology. Therefore, in

order to represent a network topology, only positions of

the open switches in the distribution network need to be

known. Suppose the number of normally open switches
is No, the length of a genetic string depends on the

number of open switches No. Genetic strings for Fig.

1(a) and (b) are represented as follows, respectively.

0 1 0 1 1 0 0 0 1 0 1 0 1 1 0 1 1 1 1 0

Switch 5 Switch 8 Switch 10 Switch 13 Switch 14

Genetic string for Fig. 1(a).

0 0 0 1 0 1 0 0 0 1 1 1 1 0 0 1 1 0 1 0

Switch 1 Switch 4 Switch 7 Switch 9 Switch 10

Genetic string for Fig. 1(b).

4.2. Fitness function

GAs are essentially unconstrained search procedures

within a given represented space. Therefore, it is very

important to construct an accurate fitness function as its

value is the only information available to guide the
search. In this paper, the fitness function is formed by

combining the object function and the penalty function,

i.e.

Fig. 1. A simple distribution network. Source transformer busbars */; closed switches �/; open switches ---; sink nodes (load nodes) �/.
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Max f �1=L (7)

where

L�Si½Ii½
2kiRi�b1 maxf0; (½Ii½�Iimax)2g

�b2 maxf0; (Vimin�Vi)
2g

�b3 maxf0; (Vi�Vimax)2g (8)

where bi (i�/1, 2, 3) is a large constant.

Suppose m is the population size, the values of the

maximum fitness, the minimum fitness, sum of fitness

and average fitness of a generation are calculated as

follows.

fmax�ffi½fi]fj�fj; j�1; : : :; mg (9)

fmin�ffi½fi 5fj�fj; j�1; : : :; mg (10)

fS�Sifi; i�1; : : :; m (11)

fav�fS=m (12)

The strings are sorted according to their fitness which

are then ranked accordingly.

4.3. Selection

In order to obtain and maintain good performance of

the fittest individuals, it is important to keep the

selection competitive enough. It is no doubt that the

fittest individuals have higher chances to be selected. In

this paper, the ‘roulette wheel selection’ scheme is used,

in which each string occupies an area of the wheel that is
equal to the string’s share of the total fitness, i.e. fi /fS.

4.4. Crossover and mutation

Crossover takes random pairs from the mating pool

and produces two new strings, each being made of one

part of the parent string. Mutation provides a way to

introduce new information into the knowledge base.
With this operator, individual genetic representations

are changed according to some probabilistic rules. In

general, the GA mutation probability is fixed through-

out the whole search process. However, in practical

application of DNRC, a small fixed mutation prob-

ability can only result in a premature convergence. In

this paper, an adaptive mutation process is used to

change the mutation probability, i.e.

p(k�1)�
p(k)�pstep if fmin(k) unchanged
p(k) if fmin(k) decreased

pfinal if p(k)�pstepBpfinal

p(0)�pinit�1:0

pstep�0:001

pfinal�0:05

where k is the generation number; and p is the mutation

probability.

The mutation scale will decrease as the process

continues. The minimum mutation probability in this

study is given as 0.05. This adaptive mutation not only

prevents premature convergence, but also leads to a

smooth convergence.

5. Numerical examples

The proposed approach for distribution network

reconfiguration is tested on 16-bus and 33-bus distribu-

tion systems as shown in Figs. 2 and 3, respectively.

System data and parameters are listed on Tables 1 and 2.

The 16-bus test system contains 3 source transformers

and 13 load nodes. The three initially-open switches are

‘4’, ‘11’ and ‘13’. The total system load is 23.7 MW,
while the initial system power loss is 0.5114 MW. The

33-bus test system consists of one source transformer

Fig. 2. A 16-bus distribution system.

Fig. 3. A 33-bus distribution system.
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Table 1

System data and parameters for 16-bus distribution network

Line no. Node i Node j Resistance Reactance Receiving node j Receiving node j

R (V) X (V) P (MW) Q (MVAr) Voltage (p.u.)

1 1 4 0.0750 0.1000 2.0 1.6 0.9907�/�/0.3968

3 4 5 0.0800 0.1100 3.0 0.4 0.9878�/�/0.5443

2 4 6 0.0900 0.1800 2.0 �/0.4 0.9860�/�/0.6972

5 6 7 0.0400 0.0400 1.5 1.2 0.9849�/�/0.7043

7 2 8 0.1100 0.1100 4.0 2.7 0.9791�/�/0.7635

8 8 9 0.0800 0.1100 5.0 1.8 0.9711�/�/1.452

9 8 10 0.1100 0.1100 1.0 0.9 0.9769�/�/0.7701

6 9 11 0.1100 0.1100 0.6 �/0.5 0.9710�/�/1.526

10 9 12 0.0800 0.1100 4.5 �/1.7 0.9693�/�/1.837

15 3 13 0.1100 0.1100 1.0 0.9 0.9944�/�/0.3293

14 13 14 0.0900 0.1200 1.0 �/1.1 0.9948�/�/0.4562

16 13 15 0.0800 0.1100 1.0 0.9 0.9918�/�/0.5228

12 15 16 0.0400 0.0400 2.1 �/0.8 0.9913�/�/0.5904

4 5 11 0.0400 0.0400

13 10 14 0.0400 0.0400

11 7 16 0.0900 0.1200

Table 2

System data and parameters for 33-bus distribution network

Line no. Node i Node j Resistance Reactance Receiving node Receiving node

R (V) X (V) P (MW) Q (MVAr) Voltage (p.u.)

1 1 2 0.0922 0.0470 100.0 60.0 0.9970�/0.0145

2 2 3 0.4930 0.2512 90.0 40.0 0.9829�/0.0960

3 3 4 0.3661 0.1864 120.0 80.0 0.9755�/0.1617

4 4 5 0.3811 0.1941 60.0 30.0 0.9681�/0.2283

5 5 6 0.8190 0.7070 60.0 20.0 0.9497�/0.1339

6 6 7 0.1872 0.6188 200.0 100.0 0.9462�/�/0.0964

7 7 8 0.7115 0.2351 200.0 100.0 0.9413�/�/0.0603

8 8 9 1.0299 0.7400 60.0 20.0 0.9351�/�/0.1334

9 9 10 1.0440 0.7400 60.0 20.0 0.9292�/�/0.1959

10 10 11 0.1967 0.0651 45.0 30.0 0.9284�/�/0.1887

11 11 12 0.3744 0.1298 60.0 35.0 0.9269�/�/0.1785

12 12 13 1.4680 1.1549 60.0 35.0 0.9208�/�/0.2698

13 13 14 0.5416 0.7129 120.0 80.0 0.9185�/�/0.3485

14 14 15 0.5909 0.5260 60.0 10.0 0.9171�/�/0.3862

15 15 16 0.7462 0.5449 60.0 20.0 0.9157�/�/0.4094

16 16 17 1.2889 1.7210 60.0 20.0 0.9137�/�/0.4868

17 17 18 0.7320 0.5739 90.0 40.0 0.9131�/�/0.4963

18 2 19 0.1640 0.1565 90.0 40.0 0.9965�/�/0.0037

19 19 20 1.5042 1.3555 90.0 40.0 0.9929�/�/0.0633

20 20 21 0.4095 0.4784 90.0 40.0 0.9922�/�/0.0827

21 21 22 0.7089 0.9373 90.0 40.0 0.9916�/�/0.1030

22 3 23 0.4512 0.3084 90.0 50.0 0.9794�/�/0.0650

23 23 24 0.8980 0.7091 420.0 200.0 0.9727�/�/0.0237

24 24 25 0.8959 0.7071 420.0 200.0 0.9694�/�/0.0674

25 6 26 0.2031 0.1034 60.0 25.0 0.9477�/0.1734

26 26 27 0.2842 0.1447 60.0 25.0 0.9452�/0.2295

27 27 28 1.0589 0.9338 60.0 20.0 0.9337�/0.3124

28 28 29 0.8043 0.7006 120.0 70.0 0.9255�/0.3904

29 29 30 0.5074 0.2585 200.0 100.0 0.9219�/0.4956

30 30 31 0.9745 0.9629 150.0 70.0 0.9178�/0.4112

31 31 32 0.3105 0.3619 210.0 100.0 0.9169�/0.3882

32 32 33 0.3411 0.5302 60.0 40.0 0.9166�/0.3805

34 8 21 2.0000 2.0000

36 9 15 2.0000 2.0000

35 12 22 2.0000 2.0000

37 18 33 0.5000 0.5000

33 25 29 0.5000 0.5000
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and 32 load points. The five initially-open switches are
‘33’, ‘34’, ‘35’, ‘36’ and ‘37’. The total system load is

3.715 MW, while the initial system power loss is

0.202674 MW. The system base is V�/12.66 kV and

S�/10 MVA.

Results on the two study systems are listed in Tables 3

and 4. The test results are also compared with those in

Ref. [7], in which the solution was stated global optima.

It can be observed that the results in this paper are even
better than those in Ref. [7]. Thus, we can say that the

global optima have been found in this paper.

6. Conclusions

An improved method to study distribution network

reconfiguration using GA is presented in the paper. The
DNRC model, in which the objective is to minimize the

distribution system loss, is formed. In the application of

GA to the DNRC, some improvements of algorithms

are made on chromosome coding, fitness function and

mutation pattern. The genetic string used in the paper is

shortened to minimize the required memories and to

ensure search efficiency. The proposed process of

adaptive mutation not only prevents premature conver-

gence, but also leads to a smooth convergence. From
several case studies and comparison with other methods,

it can be concluded that the global optima have been

found by the proposed algorithm. The validity and

effectiveness of the proposed methodology have also

been demonstrated.
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Table 4

Comparison of DNRC results for 33-bus test system

Radial network Initial

network

Method in

Ref. [7]

Proposed

method

Open switches Switch 33 Switch 7 Switch 7

Switch 34 Switch 10 Switch 9

Switch 35 Switch 14 Switch 14

Switch 36 Switch 33 Switch 32

Switch 37 Switch 37 Switch 33

Power loss (MW) 0.202674 0.141541 0.139532

Table 3

DNRC results for 16-bus test system

Radial network Initial network Proposed method

Open switches Switch 4 Switch 6

Switch 11 Switch 9

Switch 13 Switch 11

Power loss (MW) 0.5114 0.4661
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