Good afternoon, I am researching about the diferences between Matpower and Powerworld and, I'm using the IEEE case 39 (because Powerworld maximum buses are 40). I have tried so many times to adapt the case39 included in Matpower file to the IEE 39 (downloaded from its page and attached to this mail) but I have always results that aren“t the same as what I have from Powerworld. This problem may be because there is something I am not doing right. I attach the Powerworld IEE39 case and my Matpower file (case39IEEEsol) to ask if someone could help me or if someone has the IEEE 39 case already done in Matpower and could send me.
Thanks.
function mpc = case39IEEEsol %CASE39 Power flow data for 39 bus New England system. % Please see CASEFORMAT for details on the case file format. % % Data taken from [1] with the following modifications/additions: % % - renumbered gen buses consecutively (as in [2] and [4]) % - added Pmin = 0 for all gens % - added Qmin, Qmax for gens at 31 & 39 (copied from gen at 35) % - added Vg based on V in bus data (missing for bus 39) % - added Vg, Pg, Pd, Qd at bus 39 from [2] (same in [4]) % - added Pmax at bus 39: Pmax = Pg + 100 % - added line flow limits and area data from [4] % - added voltage limits, Vmax = 1.06, Vmin = 0.94 % - added identical quadratic generator costs % - increased Pmax for gen at bus 34 from 308 to 508 % (assumed typo in [1], makes initial solved case feasible) % - re-solved power flow % % Notes: % - Bus 39, its generator and 2 connecting lines were added % (by authors of [1]) to represent the interconnection with % the rest of the eastern interconnect, and did not include % Vg, Pg, Qg, Pd, Qd, Pmin, Pmax, Qmin or Qmax. % - As the swing bus, bus 31 did not include and Q limits. % - The voltages, etc in [1] appear to be quite close to the % power flow solution of the case before adding bus 39 with % it's generator and connecting branches, though the solution % is not exact. % - Explicit voltage setpoints for gen buses are not given, so % they are taken from the bus data, however this results in two % binding Q limits at buses 34 & 37, so the corresponding % voltages have probably deviated from their original setpoints. % - The generator locations and types are as follows: % 1 30 hydro % 2 31 nuke01 % 3 32 nuke02 % 4 33 fossil02 % 5 34 fossil01 % 6 35 nuke03 % 7 36 fossil04 % 8 37 nuke04 % 9 38 nuke05 % 10 39 interconnection to rest of US/Canada % % This is a solved power flow case, but it includes the following % violations: % - Pmax violated at bus 31: Pg = 677.87, Pmax = 646 % - Qmin violated at bus 37: Qg = -1.37, Qmin = 0 % % References: % [1] G. W. Bills, et.al., "On-Line Stability Analysis Study" % RP90-1 Report for the Edison Electric Institute, October 12, 1970, % pp. 1-20 - 1-35. % prepared by E. M. Gulachenski - New England Electric System % J. M. Undrill - General Electric Co. % "generally representative of the New England 345 KV system, but is % not an exact or complete model of any past, present or projected % configuration of the actual New England 345 KV system. % [2] M. A. Pai, Energy Function Analysis for Power System Stability, % Kluwer Academic Publishers, Boston, 1989. % (references [3] as source of data) % [3] Athay, T.; Podmore, R.; Virmani, S., "A Practical Method for the % Direct Analysis of Transient Stability," IEEE Transactions on Power % Apparatus and Systems , vol.PAS-98, no.2, pp.573-584, March 1979. % URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4113518&isnumber=4113486 % (references [1] as source of data) % [4] Data included with TC Calculator at http://www.pserc.cornell.edu/tcc/ % for 39-bus system. % MATPOWER %% MATPOWER Case Format : Version 2 mpc.version = '2'; %%----- Power Flow Data -----%% %% system MVA base mpc.baseMVA = 100; %% bus data % bus_i type Pd Qd Gs Bs area Vm Va baseKV zone Vmax Vmin mpc.bus = [ 1 1 0 0 0 0 2 1.0393836 -13.536602 345 1 1.06 0.94; 2 1 0 0 0 0 2 1.0484941 -9.7852666 345 1 1.06 0.94; 3 1 322 2.4 0 0 2 1.0307077 -12.276384 345 1 1.06 0.94; 4 1 500 184 0 100 1 1.00446 -12.626734 345 1 1.06 0.94; 5 1 0 0 0 200 1 1.0060063 -11.192339 345 1 1.06 0.94; 6 1 0 0 0 0 1 1.0082256 -10.40833 345 1 1.06 0.94; 7 1 233.8 84 0 0 1 0.99839728 -12.755626 345 1 1.06 0.94; 8 1 522 176 0 0 1 0.99787232 -13.335844 345 1 1.06 0.94; 9 1 0 0 0 0 1 1.038332 -14.178442 345 1 1.06 0.94; 10 1 0 0 0 0 1 1.0178431 -8.170875 345 1 1.06 0.94; 11 1 0 0 0 0 1 1.0133858 -8.9369663 345 1 1.06 0.94; 12 1 7.5 88 0 0 1 1.000815 -8.9988236 345 1 1.06 0.94; 13 1 0 0 0 0 1 1.014923 -8.9299272 345 1 1.06 0.94; 14 1 0 0 0 0 1 1.012319 -10.715295 345 1 1.06 0.94; 15 1 320 153 0 0 3 1.0161854 -11.345399 345 1 1.06 0.94; 16 1 329.4 32.3 0 0 3 1.0325203 -10.033348 345 1 1.06 0.94; 17 1 0 0 0 0 2 1.0342365 -11.116436 345 1 1.06 0.94; 18 1 158 30 0 0 2 1.0315726 -11.986168 345 1 1.06 0.94; 19 1 0 0 0 0 3 1.0501068 -5.4100729 345 1 1.06 0.94; 20 1 680 103 0 0 3 0.99101054 -6.8211783 345 1 1.06 0.94; 21 1 274 115 0 0 3 1.0323192 -7.6287461 345 1 1.06 0.94; 22 1 0 0 0 0 3 1.0501427 -3.1831199 345 1 1.06 0.94; 23 1 247.5 84.6 0 0 3 1.0451451 -3.3812763 345 1 1.06 0.94; 24 1 308.6 -92.2 0 0 3 1.038001 -9.9137585 345 1 1.06 0.94; 25 1 224 47.2 0 0 2 1.0576827 -8.3692354 345 1 1.06 0.94; 26 1 139 17 0 0 2 1.0525613 -9.4387696 345 1 1.06 0.94; 27 1 281 75.5 0 0 2 1.0383449 -11.362152 345 1 1.06 0.94; 28 1 206 27.6 0 0 3 1.0503737 -5.9283592 345 1 1.06 0.94; 29 1 283.5 26.9 0 0 3 1.0501149 -3.1698741 345 1 1.06 0.94; 30 1 0 0 0 0 2 1.0499 -7.3704746 345 1 1.06 0.94; 31 3 9.2 4.6 0 0 1 0.982 0 345 1 1.06 0.94; 32 1 0 0 0 0 1 0.9841 -0.1884374 345 1 1.06 0.94; 33 1 0 0 0 0 3 0.9972 -0.19317445 345 1 1.06 0.94; 34 1 0 0 0 0 3 1.0123 -1.631119 345 1 1.06 0.94; 35 1 0 0 0 0 3 1.0494 1.7765069 345 1 1.06 0.94; 36 1 0 0 0 0 3 1.0636 4.4684374 345 1 1.06 0.94; 37 1 0 0 0 0 2 1.0275 -1.5828988 345 1 1.06 0.94; 38 1 0 0 0 0 3 1.0265 3.8928177 345 1 1.06 0.94; 39 1 1104 250 0 0 1 1.03 -14.535256 345 1 1.06 0.94; ]; %% generator data % bus Pg Qg Qmax Qmin Vg mBase status Pmax Pmin Pc1 Pc2 Qc1min Qc1max Qc2min Qc2max ramp_agc ramp_10 ramp_30 ramp_q apf mpc.gen = [ 30 250 83.21 400 -140 1.0499 100 1 1040 0 0 0 0 0 0 0 0 0 0 0 0; 31 571.28 363.94 300 -100 0.982 100 1 646 0 0 0 0 0 0 0 0 0 0 0 0; 32 650 1.53 300 150 0.9841 100 1 725 0 0 0 0 0 0 0 0 0 0 0 0; 33 632 69.67 250 0 0.9972 100 1 652 0 0 0 0 0 0 0 0 0 0 0 0; 34 508 148.79 167 0 1.0123 100 1 508 0 0 0 0 0 0 0 0 0 0 0 0; 35 650 167.04 300 -100 1.0494 100 1 687 0 0 0 0 0 0 0 0 0 0 0 0; 36 560 75.45 240 0 1.0636 100 1 580 0 0 0 0 0 0 0 0 0 0 0 0; 37 540 -35.35 250 0 1.0275 100 1 564 0 0 0 0 0 0 0 0 0 0 0 0; 38 830 -0.47 300 -150 1.0265 100 1 865 0 0 0 0 0 0 0 0 0 0 0 0; 39 1000 -36.49 300 -100 1.03 100 1 1100 0 0 0 0 0 0 0 0 0 0 0 0; ]; %% branch data % fbus tbus r x b rateA rateB rateC ratio angle status angmin angmax mpc.branch = [ 1 2 0.0035 0.0411 0.6987 600 600 600 0 0 1 -360 360; 1 39 0.001 0.025 0.75 1000 1000 1000 0 0 1 -360 360; 2 3 0.0013 0.0151 0.2572 500 500 500 0 0 1 -360 360; 2 25 0.007 0.0086 0.146 500 500 500 0 0 1 -360 360; 2 30 0 0.0181 0 900 900 2500 1.025 0 1 -360 360; 3 4 0.0013 0.0213 0.2214 500 500 500 0 0 1 -360 360; 3 18 0.0011 0.0133 0.2138 500 500 500 0 0 1 -360 360; 4 5 0.0008 0.0128 0.1342 600 600 600 0 0 1 -360 360; 4 14 0.0008 0.0129 0.1382 500 500 500 0 0 1 -360 360; 5 6 0.0002 0.0026 0.0434 1200 1200 1200 0 0 1 -360 360; 5 8 0.0008 0.0112 0.1476 900 900 900 0 0 1 -360 360; 6 7 0.0006 0.0092 0.113 900 900 900 0 0 1 -360 360; 6 11 0.0007 0.0082 0.1389 480 480 480 0 0 1 -360 360; 6 31 0 0.025 0 1800 1800 1800 1.07 0 1 -360 360; 7 8 0.0004 0.0046 0.078 900 900 900 0 0 1 -360 360; 8 9 0.0023 0.0363 0.3804 900 900 900 0 0 1 -360 360; 9 39 0.001 0.025 1.2 900 900 900 0 0 1 -360 360; 10 11 0.0004 0.0043 0.0729 600 600 600 0 0 1 -360 360; 10 13 0.0004 0.0043 0.0729 600 600 600 0 0 1 -360 360; 10 32 0 0.02 0 900 900 2500 1.07 0 1 -360 360; 12 11 0.0016 0.0435 0 500 500 500 1.006 0 1 -360 360; 12 13 0.0016 0.0435 0 500 500 500 1.006 0 1 -360 360; 13 14 0.0009 0.0101 0.1723 600 600 600 0 0 1 -360 360; 14 15 0.0018 0.0217 0.366 600 600 600 0 0 1 -360 360; 15 16 0.0009 0.0094 0.171 600 600 600 0 0 1 -360 360; 16 17 0.0007 0.0089 0.1342 600 600 600 0 0 1 -360 360; 16 19 0.0016 0.0195 0.304 600 600 2500 0 0 1 -360 360; 16 21 0.0008 0.0135 0.2548 600 600 600 0 0 1 -360 360; 16 24 0.0003 0.0059 0.068 600 600 600 0 0 1 -360 360; 17 18 0.0007 0.0082 0.1319 600 600 600 0 0 1 -360 360; 17 27 0.0013 0.0173 0.3216 600 600 600 0 0 1 -360 360; 19 20 0.0007 0.0138 0 900 900 2500 1.06 0 1 -360 360; 19 33 0.0007 0.0142 0 900 900 2500 1.07 0 1 -360 360; 20 34 0.0009 0.018 0 900 900 2500 1.009 0 1 -360 360; 21 22 0.0008 0.014 0.2565 900 900 900 0 0 1 -360 360; 22 23 0.0006 0.0096 0.1846 600 600 600 0 0 1 -360 360; 22 35 0 0.0143 0 900 900 2500 1.025 0 1 -360 360; 23 24 0.0022 0.035 0.361 600 600 600 0 0 1 -360 360; 23 36 0.0005 0.0272 0 900 900 2500 1 0 1 -360 360; 25 26 0.0032 0.0323 0.531 600 600 600 0 0 1 -360 360; 25 37 0.0006 0.0232 0 900 900 2500 1.025 0 1 -360 360; 26 27 0.0014 0.0147 0.2396 600 600 600 0 0 1 -360 360; 26 28 0.0043 0.0474 0.7802 600 600 600 0 0 1 -360 360; 26 29 0.0057 0.0625 1.029 600 600 600 0 0 1 -360 360; 28 29 0.0014 0.0151 0.249 600 600 600 0 0 1 -360 360; 29 38 0.0008 0.0156 0 1200 1200 2500 1.025 0 1 -360 360; ]; %%----- OPF Data -----%% %% generator cost data % 1 startup shutdown n x1 y1 ... xn yn % 2 startup shutdown n c(n-1) ... c0 mpc.gencost = [ 2 0 0 3 0.01 0.3 0.2; 2 0 0 3 0.01 0.3 0.2; 2 0 0 3 0.01 0.3 0.2; 2 0 0 3 0.01 0.3 0.2; 2 0 0 3 0.01 0.3 0.2; 2 0 0 3 0.01 0.3 0.2; 2 0 0 3 0.01 0.3 0.2; 2 0 0 3 0.01 0.3 0.2; 2 0 0 3 0.01 0.3 0.2; 2 0 0 3 0.01 0.3 0.2; ];
IEEE 39 bus.pwb
Description: application/pwb
IEEE 39 bus.pwd
Description: Binary data
IEEE 39 bus.RAW
Description: Binary data
IEEE 39 bus.EPC
Description: Binary data
