I looked at Chris Caldwells page on Wieferich (1909)
primes but I could not see exaclty how p^2|2^(p-1)-1 relates to
Mersennes with square factors? I can see that Mp=3(2^(p-1)-1).
So my question is this "How does one derive Wieferich's result,
from the statement: let p be a prime and n be an integer such
that p^2|2^n-1?"
I assume that n must be a prime otherwise:
Is it always true that if q|2^p-1 where p & q are primes
then q^2|2^(pq)-1? eg. 23^2|2^(23.11)-1.
Thanks.
----------------------------------------------------------
Daniel
e-mail: [EMAIL PROTECTED]
_________________________________________________________________
Unsubscribe & list info -- http://www.scruz.net/~luke/signup.htm
Mersenne Prime FAQ -- http://www.tasam.com/~lrwiman/FAQ-mers