This series (which is ready for production and improves the cycle count
of over 46k shaders) has been sitting here for nearly half a year.  I'm
planning to self-review it and land it (along with PATCH 3/2 I just sent
to make sure we keep regressions under control) if nobody else does in
the next two weeks.

Francisco Jerez <curroje...@riseup.net> writes:

> Unnecessary GRF bank conflicts increase the issue time of ternary
> instructions (the overwhelmingly most common of which is MAD) by
> roughly 50%, leading to reduced ALU throughput.  This pass attempts to
> minimize the number of bank conflicts by rearranging the layout of the
> GRF space post-register allocation.  It's in general not possible to
> eliminate all of them without introducing extra copies, which are
> typically more expensive than the bank conflict itself.
>
> In a shader-db run on SKL this helps roughly 46k shaders:
>
>    total conflicts in shared programs: 1008981 -> 600461 (-40.49%)
>    conflicts in affected programs: 816222 -> 407702 (-50.05%)
>    helped: 46234
>    HURT: 72
>
> The running time of shader-db itself on SKL seems to be increased by
> roughly 2.52%±1.13% with n=20 due to the additional work done by the
> compiler back-end.
>
> On earlier generations the pass is somewhat less effective in relative
> terms because the hardware incurs a bank conflict anytime the last two
> sources of the instruction are duplicate (e.g. while trying to square
> a value using MAD), which is impossible to avoid without introducing
> copies.  E.g. for a shader-db run on SNB:
>
>    total conflicts in shared programs: 944636 -> 623185 (-34.03%)
>    conflicts in affected programs: 853258 -> 531807 (-37.67%)
>    helped: 31052
>    HURT: 19
>
> And on BDW:
>
>    total conflicts in shared programs: 1418393 -> 987539 (-30.38%)
>    conflicts in affected programs: 1179787 -> 748933 (-36.52%)
>    helped: 47592
>    HURT: 70
>
> On SKL GT4e this improves performance of GpuTest Volplosion by 3.64%
> ±0.33% with n=16.
>
> NOTE: This patch intentionally disregards some i965 coding conventions
>       for the sake of reviewability.  This is addressed by the next
>       squash patch which introduces an amount of (for the most part
>       boring) boilerplate that might distract reviewers from the
>       non-trivial algorithmic details of the pass.
> ---
>  src/intel/Makefile.sources                   |   1 +
>  src/intel/compiler/brw_fs.cpp                |   2 +
>  src/intel/compiler/brw_fs.h                  |   1 +
>  src/intel/compiler/brw_fs_bank_conflicts.cpp | 791 
> +++++++++++++++++++++++++++
>  4 files changed, 795 insertions(+)
>  create mode 100644 src/intel/compiler/brw_fs_bank_conflicts.cpp
>
> diff --git a/src/intel/Makefile.sources b/src/intel/Makefile.sources
> index a877ff2..1b9799a 100644
> --- a/src/intel/Makefile.sources
> +++ b/src/intel/Makefile.sources
> @@ -44,6 +44,7 @@ COMPILER_FILES = \
>       compiler/brw_eu_util.c \
>       compiler/brw_eu_validate.c \
>       compiler/brw_fs_builder.h \
> +        compiler/brw_fs_bank_conflicts.cpp \
>       compiler/brw_fs_cmod_propagation.cpp \
>       compiler/brw_fs_combine_constants.cpp \
>       compiler/brw_fs_copy_propagation.cpp \
> diff --git a/src/intel/compiler/brw_fs.cpp b/src/intel/compiler/brw_fs.cpp
> index 43b6e34..0a85c0c 100644
> --- a/src/intel/compiler/brw_fs.cpp
> +++ b/src/intel/compiler/brw_fs.cpp
> @@ -5858,6 +5858,8 @@ fs_visitor::allocate_registers(bool allow_spilling)
>     if (failed)
>        return;
>  
> +   opt_bank_conflicts();
> +
>     schedule_instructions(SCHEDULE_POST);
>  
>     if (last_scratch > 0) {
> diff --git a/src/intel/compiler/brw_fs.h b/src/intel/compiler/brw_fs.h
> index 6c8c027..b1fc7b3 100644
> --- a/src/intel/compiler/brw_fs.h
> +++ b/src/intel/compiler/brw_fs.h
> @@ -141,6 +141,7 @@ public:
>                                     exec_list *acp);
>     bool opt_drop_redundant_mov_to_flags();
>     bool opt_register_renaming();
> +   bool opt_bank_conflicts();
>     bool register_coalesce();
>     bool compute_to_mrf();
>     bool eliminate_find_live_channel();
> diff --git a/src/intel/compiler/brw_fs_bank_conflicts.cpp 
> b/src/intel/compiler/brw_fs_bank_conflicts.cpp
> new file mode 100644
> index 0000000..0225c70
> --- /dev/null
> +++ b/src/intel/compiler/brw_fs_bank_conflicts.cpp
> @@ -0,0 +1,791 @@
> +/*
> + * Copyright © 2017 Intel Corporation
> + *
> + * Permission is hereby granted, free of charge, to any person obtaining a
> + * copy of this software and associated documentation files (the "Software"),
> + * to deal in the Software without restriction, including without limitation
> + * the rights to use, copy, modify, merge, publish, distribute, sublicense,
> + * and/or sell copies of the Software, and to permit persons to whom the
> + * Software is furnished to do so, subject to the following conditions:
> + *
> + * The above copyright notice and this permission notice (including the next
> + * paragraph) shall be included in all copies or substantial portions of the
> + * Software.
> + *
> + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
> + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
> + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
> + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
> + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
> + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 
> DEALINGS
> + * IN THE SOFTWARE.
> + */
> +
> +/** @file brw_fs_bank_conflicts.cpp
> + *
> + * This file contains a GRF bank conflict mitigation pass.  The pass is
> + * intended to be run after register allocation and works by rearranging the
> + * layout of the GRF space (hopefully without altering the semantics of the
> + * program) in a way that minimizes the number of GRF bank conflicts incurred
> + * by ternary instructions.
> + *
> + * Unfortunately there is close to no information about bank conflicts in the
> + * hardware spec, but experimentally on Gen7-Gen9 ternary instructions seem 
> to
> + * incur an average bank conflict penalty of one cycle per SIMD8 op whenever
> + * the second and third source are stored in the same GRF bank (\sa bank_of()
> + * for the exact bank layout) which cannot be fetched during the same cycle 
> by
> + * the EU, unless the EU logic manages to optimize out the read cycle of a
> + * duplicate source register (\sa is_conflict_optimized_out()).
> + *
> + * The asymptotic run-time of the algorithm is dominated by the
> + * shader_conflict_weight_matrix() computation below, which is O(n) on the
> + * number of instructions in the program, however for small and medium-sized
> + * programs the run-time is likely to be dominated by
> + * optimize_reg_permutation() which is O(m^3) on the number of GRF atoms of
> + * the program (\sa partitioning), which is bounded (since the program uses a
> + * bounded number of registers post-regalloc) and of the order of 100.  For
> + * that reason optimize_reg_permutation() is vectorized in order to keep the
> + * cubic term within reasonable bounds for m close to its theoretical 
> maximum.
> + */
> +
> +#include "brw_fs.h"
> +#include "brw_cfg.h"
> +
> +#include <vector>
> +#include <array>
> +
> +#ifdef __SSE2__
> +
> +#include <emmintrin.h>
> +
> +/**
> + * Thin layer around vector intrinsics so they can be easily replaced with
> + * e.g. the fall-back scalar path, an implementation with different vector
> + * width or using different SIMD architectures (AVX-512?!).
> + *
> + * This implementation operates on pairs of independent SSE2 integer vectors 
> à
> + * la SIMD16 for somewhat improved throughput.  SSE2 is supported by 
> virtually
> + * all platforms that care about bank conflicts, so this path should almost
> + * always be available in practice.
> + */
> +namespace {
> +   /**
> +    * SIMD integer vector data type.
> +    */
> +   typedef std::array<__m128i, 2> vector_type;
> +
> +   /**
> +    * Scalar data type matching the representation of a single component of 
> \p
> +    * vector_type.
> +    */
> +   typedef int16_t scalar_type;
> +
> +   /**
> +    * Maximum integer value representable as a \p scalar_type.
> +    */
> +   const scalar_type max_scalar = INT16_MAX;
> +
> +   /**
> +    * Number of components of a \p vector_type.
> +    */
> +   const unsigned vector_width = 2 * sizeof(vector_type::value_type) /
> +                                     sizeof(scalar_type);
> +
> +   /**
> +    * Set the i-th component of vector \p v to \p x.
> +    */
> +   void
> +   set(vector_type &v, unsigned i, scalar_type x)
> +   {
> +      assert(i < vector_width);
> +      memcpy((char *)v.data() + i * sizeof(x), &x, sizeof(x));
> +   }
> +
> +   /**
> +    * Get the i-th component of vector \p v.
> +    */
> +   scalar_type
> +   get(const vector_type &v, unsigned i)
> +   {
> +      assert(i < vector_width);
> +      scalar_type x;
> +      memcpy(&x, (char *)v.data() + i * sizeof(x), sizeof(x));
> +      return x;
> +   }
> +
> +   /**
> +    * Add two vectors with saturation.
> +    */
> +   vector_type
> +   adds(const vector_type &v, const vector_type &w)
> +   {
> +      const vector_type u = {
> +         _mm_adds_epi16(v[0], w[0]),
> +         _mm_adds_epi16(v[1], w[1])
> +      };
> +      return u;
> +   }
> +
> +   /**
> +    * Subtract two vectors with saturation.
> +    */
> +   vector_type
> +   subs(const vector_type &v, const vector_type &w)
> +   {
> +      const vector_type u = {
> +         _mm_subs_epi16(v[0], w[0]),
> +         _mm_subs_epi16(v[1], w[1])
> +      };
> +      return u;
> +   }
> +
> +   /**
> +    * Compute the bitwise conjunction of two vectors.
> +    */
> +   vector_type
> +   mask(const vector_type &v, const vector_type &w)
> +   {
> +      const vector_type u = {
> +         _mm_and_si128(v[0], w[0]),
> +         _mm_and_si128(v[1], w[1])
> +      };
> +      return u;
> +   }
> +
> +   /**
> +    * Reduce the components of a vector using saturating addition.
> +    */
> +   scalar_type
> +   sums(const vector_type &v)
> +   {
> +      const __m128i v8 = _mm_adds_epi16(v[0], v[1]);
> +      const __m128i v4 = _mm_adds_epi16(v8, _mm_shuffle_epi32(v8, 0x4e));
> +      const __m128i v2 = _mm_adds_epi16(v4, _mm_shuffle_epi32(v4, 0xb1));
> +      const __m128i v1 = _mm_adds_epi16(v2, _mm_shufflelo_epi16(v2, 0xb1));
> +      return _mm_extract_epi16(v1, 0);
> +   }
> +}
> +
> +#else
> +
> +/**
> + * Thin layer around vector intrinsics so they can be easily replaced with
> + * e.g. the fall-back scalar path, an implementation with different vector
> + * width or using different SIMD architectures (AVX-512?!).
> + *
> + * This implementation operates on scalar values and doesn't rely on
> + * any vector extensions.  This is mainly intended for debugging and
> + * to keep this file building on exotic platforms.
> + */
> +namespace {
> +   /**
> +    * SIMD integer vector data type.
> +    */
> +   typedef int16_t vector_type;
> +
> +   /**
> +    * Scalar data type matching the representation of a single component of 
> \p
> +    * vector_type.
> +    */
> +   typedef int16_t scalar_type;
> +
> +   /**
> +    * Maximum integer value representable as a \p scalar_type.
> +    */
> +   const scalar_type max_scalar = INT16_MAX;
> +
> +   /**
> +    * Number of components of a \p vector_type.
> +    */
> +   const unsigned vector_width = 1;
> +
> +   /**
> +    * Set the i-th component of vector \p v to \p x.
> +    */
> +   void
> +   set(vector_type &v, unsigned i, scalar_type x)
> +   {
> +      assert(i < vector_width);
> +      v = x;
> +   }
> +
> +   /**
> +    * Get the i-th component of vector \p v.
> +    */
> +   scalar_type
> +   get(const vector_type &v, unsigned i)
> +   {
> +      assert(i < vector_width);
> +      return v;
> +   }
> +
> +   /**
> +    * Add two vectors with saturation.
> +    */
> +   vector_type
> +   adds(vector_type v, vector_type w)
> +   {
> +      return std::max(INT16_MIN, std::min(INT16_MAX, int(v) + w));
> +   }
> +
> +   /**
> +    * Substract two vectors with saturation.
> +    */
> +   vector_type
> +   subs(vector_type v, vector_type w)
> +   {
> +      return std::max(INT16_MIN, std::min(INT16_MAX, int(v) - w));
> +   }
> +
> +   /**
> +    * Compute the bitwise conjunction of two vectors.
> +    */
> +   vector_type
> +   mask(vector_type v, vector_type w)
> +   {
> +      return v & w;
> +   }
> +
> +   /**
> +    * Reduce the components of a vector using saturating addition.
> +    */
> +   scalar_type
> +   sums(vector_type v)
> +   {
> +      return v;
> +   }
> +}
> +
> +#endif
> +
> +namespace {
> +   /**
> +    * Variable-length vector type intended to represent cycle-count costs for
> +    * arbitrary atom-to-bank assignments.  It's indexed by a pair of integers
> +    * (i, p), where i is an atom index and p in {0, 1} indicates the parity 
> of
> +    * the conflict (respectively, whether the cost is incurred whenever the
> +    * atoms are assigned the same bank b or opposite-parity banks b and b^1).
> +    * \sa shader_conflict_weight_matrix()
> +    */
> +   typedef std::vector<vector_type> weight_vector_type;
> +
> +   /**
> +    * Set the (i, p)-th component of weight vector \p v to \p x.
> +    */
> +   void
> +   set(weight_vector_type &v, unsigned i, unsigned p, scalar_type x)
> +   {
> +      set(v[(2 * i + p) / vector_width], (2 * i + p) % vector_width, x);
> +   }
> +
> +   /**
> +    * Get the (i, p)-th component of weight vector \p v.
> +    */
> +   scalar_type
> +   get(const weight_vector_type &v, unsigned i, unsigned p)
> +   {
> +      return get(v[(2 * i + p) / vector_width], (2 * i + p) % vector_width);
> +   }
> +
> +   /**
> +    * Swap the (i, p)-th and (j, q)-th components of weight vector \p v.
> +    */
> +   void
> +   swap(weight_vector_type &v,
> +        unsigned i, unsigned p,
> +        unsigned j, unsigned q)
> +   {
> +      const scalar_type tmp = get(v, i, p);
> +      set(v, i, p, get(v, j, q));
> +      set(v, j, q, tmp);
> +   }
> +}
> +
> +namespace {
> +   /**
> +    * Object that represents the partitioning of an arbitrary register space
> +    * into indivisible units (referred to as atoms below) that can 
> potentially
> +    * be rearranged independently from other registers.  The partitioning is
> +    * inferred from a number of contiguity requirements specified using
> +    * require_contiguous().  This allows efficient look-up of the atom index 
> a
> +    * given register address belongs to, or conversely the range of register
> +    * addresses that belong to a given atom.
> +    */
> +   struct partitioning {
> +      /**
> +       * Create a (for the moment unrestricted) partitioning of a register
> +       * file of size \p n.  The units are arbitrary.
> +       */
> +      partitioning(unsigned n) {
> +         for (unsigned i = 0; i < n + num_terminator_atoms; i++) {
> +            offsets.push_back(i);
> +            atoms.push_back(i);
> +         }
> +      }
> +
> +      /**
> +       * Require register range [reg, reg + n[ to be considered part of the
> +       * same atom.
> +       */
> +      void
> +      require_contiguous(unsigned reg, unsigned n)
> +      {
> +         unsigned r = atoms[reg];
> +
> +         /* Renumber atoms[reg...] = { r... } and their offsets[r...] for the
> +          * case that the specified contiguity requirement leads to the 
> fusion
> +          * (yay) of one or more existing atoms.
> +          */
> +         for (unsigned reg1 = reg + 1; reg1 < atoms.size(); reg1++) {
> +            if (offsets[atoms[reg1]] < reg + n) {
> +               atoms[reg1] = r;
> +            } else {
> +               if (offsets[atoms[reg1 - 1]] != offsets[atoms[reg1]])
> +                  r++;
> +
> +               offsets[r] = offsets[atoms[reg1]];
> +               atoms[reg1] = r;
> +            }
> +         }
> +
> +         /* Clean up the scraps if we ended up with less atoms than we 
> started
> +          * with.
> +          */
> +         offsets.erase(offsets.begin() + r + 1, offsets.end());
> +      }
> +
> +      /**
> +       * Get the atom index register address \p reg belongs to.
> +       */
> +      unsigned
> +      atom_of_reg(unsigned reg) const
> +      {
> +         return atoms[reg];
> +      }
> +
> +      /**
> +       * Get the base register address that belongs to atom \p r.
> +       */
> +      unsigned
> +      reg_of_atom(unsigned r) const
> +      {
> +         return offsets[r];
> +      }
> +
> +      /**
> +       * Get the size of atom \p r in register address units.
> +       */
> +      unsigned
> +      size_of_atom(unsigned r) const
> +      {
> +         assert(r < num_atoms());
> +         return reg_of_atom(r + 1) - reg_of_atom(r);
> +      }
> +
> +      /**
> +       * Get the number of atoms the whole register space is partitioned 
> into.
> +       */
> +      unsigned
> +      num_atoms() const
> +      {
> +         return offsets.size() - num_terminator_atoms;
> +      }
> +
> +   private:
> +      /**
> +       * Number of trailing atoms inserted for convenience so among other
> +       * things we don't need to special-case the last element in
> +       * size_of_atom().
> +       */
> +      static const unsigned num_terminator_atoms = 1;
> +      std::vector<unsigned> offsets;
> +      std::vector<unsigned> atoms;
> +   };
> +
> +   /**
> +    * Only GRF sources (whether they have been register-allocated or not) can
> +    * possibly incur bank conflicts.
> +    */
> +   bool
> +   is_grf(const fs_reg &r)
> +   {
> +      return r.file == VGRF || r.file == FIXED_GRF;
> +   }
> +
> +   /**
> +    * Register offset of \p r in GRF units.  Useful because the 
> representation
> +    * of GRFs post-register allocation is somewhat inconsistent and depends 
> on
> +    * whether the register already had a fixed GRF offset prior to register
> +    * allocation or whether it was part of a VGRF allocation.
> +    */
> +   unsigned
> +   reg_of(const fs_reg &r)
> +   {
> +      assert(is_grf(r));
> +      if (r.file == VGRF)
> +         return r.nr + r.offset / REG_SIZE;
> +      else
> +         return reg_offset(r) / REG_SIZE;
> +   }
> +
> +   /**
> +    * Calculate the finest partitioning of the GRF space compatible with the
> +    * register contiguity requirements derived from all instructions part of
> +    * the program.
> +    */
> +   partitioning
> +   shader_reg_partitioning(const fs_visitor *v)
> +   {
> +      partitioning p(BRW_MAX_GRF);
> +
> +      foreach_block_and_inst(block, fs_inst, inst, v->cfg) {
> +         if (is_grf(inst->dst))
> +            p.require_contiguous(reg_of(inst->dst), regs_written(inst));
> +
> +         for (int i = 0; i < inst->sources; i++) {
> +            if (is_grf(inst->src[i]))
> +               p.require_contiguous(reg_of(inst->src[i]), regs_read(inst, 
> i));
> +         }
> +      }
> +
> +      return p;
> +   }
> +
> +   /**
> +    * Return the set of GRF atoms that should be left untouched at their
> +    * original location to avoid violating hardware or software assumptions.
> +    */
> +   std::vector<bool>
> +   shader_reg_constraints(const fs_visitor *v, const partitioning &p)
> +   {
> +      std::vector<bool> constrained(p.num_atoms());
> +
> +      /* These are read implicitly by some send-message instructions without
> +       * any indication at the IR level.  Assume they are unsafe to move
> +       * around.
> +       */
> +      for (unsigned reg = 0; reg < 2; reg++)
> +         constrained[p.atom_of_reg(reg)] = true;
> +
> +      /* Assume that anything referenced via fixed GRFs is baked into the
> +       * hardware's fixed-function logic and may be unsafe to move around.
> +       * Also take into account the source GRF restrictions of EOT
> +       * send-message instructions.
> +       */
> +      foreach_block_and_inst(block, fs_inst, inst, v->cfg) {
> +         if (inst->dst.file == FIXED_GRF)
> +            constrained[p.atom_of_reg(reg_of(inst->dst))] = true;
> +
> +         for (int i = 0; i < inst->sources; i++) {
> +            if (inst->src[i].file == FIXED_GRF ||
> +                (is_grf(inst->src[i]) && inst->eot))
> +               constrained[p.atom_of_reg(reg_of(inst->src[i]))] = true;
> +         }
> +      }
> +
> +      return constrained;
> +   }
> +
> +   /**
> +    * Return whether the hardware will be able to prevent a bank conflict by
> +    * optimizing out the read cycle of a source register.  The formula was
> +    * found experimentally.
> +    */
> +   bool
> +   is_conflict_optimized_out(const gen_device_info *devinfo, const fs_inst 
> *inst)
> +   {
> +      return devinfo->gen >= 9 &&
> +         ((is_grf(inst->src[0]) && (reg_of(inst->src[0]) == 
> reg_of(inst->src[1]) ||
> +                                    reg_of(inst->src[0]) == 
> reg_of(inst->src[2]))) ||
> +          reg_of(inst->src[1]) == reg_of(inst->src[2]));
> +   }
> +
> +   /**
> +    * Return a matrix that allows reasonably efficient computation of the
> +    * cycle-count cost of bank conflicts incurred throughout the whole 
> program
> +    * for any given atom-to-bank assignment.
> +    *
> +    * More precisely, if C_r_s_p is the result of this function, the total
> +    * cost of all bank conflicts involving any given atom r can be readily
> +    * recovered as follows:
> +    *
> +    *  S(B) = Sum_s_p(d_(p^B_r)_(B_s) * C_r_s_p)
> +    *
> +    * where d_i_j is the Kronecker delta, and B_r indicates the bank
> +    * assignment of r.  \sa delta_conflicts() for a vectorized implementation
> +    * of the expression above.
> +    *
> +    * FINISHME: Teach this about the Gen10+ bank conflict rules, which are
> +    *           somewhat more relaxed than on previous generations.  In the
> +    *           meantime optimizing based on Gen9 weights is likely to be 
> more
> +    *           helpful than not optimizing at all.
> +    */
> +   std::vector<weight_vector_type>
> +   shader_conflict_weight_matrix(const fs_visitor *v, const partitioning &p)
> +   {
> +      std::vector<weight_vector_type> conflicts(p.num_atoms(),
> +         weight_vector_type(DIV_ROUND_UP(2 * p.num_atoms(),
> +                                               vector_width)));
> +      /* Crude approximation of the number of times the current basic block
> +       * will be executed at run-time.
> +       */
> +      unsigned block_scale = 1;
> +
> +      foreach_block_and_inst(block, fs_inst, inst, v->cfg) {
> +         if (inst->opcode == BRW_OPCODE_DO) {
> +            block_scale *= 10;
> +
> +         } else if (inst->opcode == BRW_OPCODE_WHILE) {
> +            block_scale /= 10;
> +
> +         } else if (inst->is_3src(v->devinfo) &&
> +                    is_grf(inst->src[1]) && is_grf(inst->src[2])) {
> +            const unsigned r = p.atom_of_reg(reg_of(inst->src[1]));
> +            const unsigned s = p.atom_of_reg(reg_of(inst->src[2]));
> +
> +            /* Estimate of the cycle-count cost of incurring a bank conflict
> +             * for this instruction.  This is only true on the average, for a
> +             * sequence of back-to-back ternary instructions, since the EU
> +             * front-end only seems to be able to issue a new instruction at
> +             * an even cycle.  The cost of a bank conflict incurred by an
> +             * isolated ternary instruction may be higher.
> +             */
> +            const unsigned exec_size = 
> inst->dst.component_size(inst->exec_size);
> +            const unsigned cycle_scale = block_scale * 
> DIV_ROUND_UP(exec_size,
> +                                                                    
> REG_SIZE);
> +
> +            /* Neglect same-atom conflicts (since they're either trivial or
> +             * impossible to avoid without splitting the atom), and conflicts
> +             * known to be optimized out by the hardware.
> +             */
> +            if (r != s && !is_conflict_optimized_out(v->devinfo, inst)) {
> +               /* Calculate the parity of the sources relative to the start 
> of
> +                * their respective atoms.  If their parity is the same (and
> +                * none of the atoms straddle the 2KB mark), the instruction
> +                * will incur a conflict iff both atoms are assigned the same
> +                * bank b.  If their parity is opposite, the instruction will
> +                * incur a conflict iff they are assigned opposite banks (b 
> and
> +                * b^1).
> +                */
> +               const bool p_r = 1 & (reg_of(inst->src[1]) - 
> p.reg_of_atom(r));
> +               const bool p_s = 1 & (reg_of(inst->src[2]) - 
> p.reg_of_atom(s));
> +               const unsigned p = p_r ^ p_s;
> +
> +               /* Calculate the updated cost of a hypothetical conflict
> +                * between atoms r and s.  Note that the weight matrix is
> +                * symmetric with respect to indices r and s by construction.
> +                */
> +               const scalar_type w = std::min(unsigned(max_scalar),
> +                  get(conflicts[r], s, p) + cycle_scale);
> +               set(conflicts[r], s, p, w);
> +               set(conflicts[s], r, p, w);
> +            }
> +         }
> +      }
> +
> +      return conflicts;
> +   }
> +
> +   /**
> +    * Return the set of GRF atoms that could potentially lead to bank
> +    * conflicts if laid out unfavorably in the GRF space according to
> +    * the specified \p conflicts matrix (\sa
> +    * shader_conflict_weight_matrix()).
> +    */
> +   std::vector<bool>
> +   have_any_conflicts(const std::vector<weight_vector_type> &conflicts)
> +   {
> +      std::vector<bool> any_conflicts(conflicts.size());
> +
> +      for (unsigned r = 0; r < conflicts.size(); r++) {
> +         for (unsigned s = 0; s < conflicts[r].size(); s++)
> +            any_conflicts[r] = any_conflicts[r] || sums(conflicts[r][s]);
> +      }
> +
> +      return any_conflicts;
> +   }
> +
> +   /**
> +    * Calculate the difference between two S(B) cost estimates as defined
> +    * above (\sa shader_conflict_weight_matrix()).  This represents the
> +    * (partial) cycle-count benefit from moving an atom r from bank p to n.
> +    * The respective bank assignments Bp and Bn are encoded as the \p
> +    * bank_mask_p and \p bank_mask_n bitmasks for efficient computation,
> +    * according to the formula:
> +    *
> +    *  bank_mask(B)_s_p = -d_(p^B_r)_(B_s)
> +    *
> +    * Notice the similarity with the delta function in the S(B) expression
> +    * above, and how bank_mask(B) can be precomputed for every possible
> +    * selection of r since bank_mask(B) only depends on it via B_r that may
> +    * only assume one of four different values, so the caller can keep every
> +    * possible bank_mask(B) vector in memory without much hassle (\sa
> +    * bank_characteristics()).
> +    */
> +   int
> +   delta_conflicts(const weight_vector_type &bank_mask_p,
> +                   const weight_vector_type &bank_mask_n,
> +                   const weight_vector_type &conflicts)
> +   {
> +      vector_type s_p = {}, s_n = {};
> +
> +      for (unsigned r = 0; r < conflicts.size(); r++) {
> +         s_p = adds(s_p, mask(bank_mask_p[r], conflicts[r]));
> +         s_n = adds(s_n, mask(bank_mask_n[r], conflicts[r]));
> +      }
> +
> +      return sums(subs(s_p, s_n));
> +   }
> +
> +   /**
> +    * Return an identity permutation of GRF atoms, represented as the start 
> GRF
> +    * offset each atom is mapped into.
> +    */
> +   std::vector<unsigned>
> +   identity_reg_permutation(const partitioning &p)
> +   {
> +      std::vector<unsigned> map(p.num_atoms());
> +
> +      for (unsigned r = 0; r < map.size(); r++)
> +         map[r] = p.reg_of_atom(r);
> +
> +      return map;
> +   }
> +
> +   /**
> +    * Return the bank index of GRF address \p reg, numbered according to the
> +    * table:
> +    *        Even Odd
> +    *    Lo    0   1
> +    *    Hi    2   3
> +    */
> +   unsigned
> +   bank_of(unsigned reg)
> +   {
> +      return (reg & 0x40) >> 5 | (reg & 1);
> +   }
> +
> +   /**
> +    * Return bitmasks suitable for use as bank mask arguments for the
> +    * delta_conflicts() computation.  Note that this is just the (negative)
> +    * characteristic function of each bank, if you regard it as a set
> +    * containing all atoms assigned to it according to the \p map array.
> +    */
> +   std::array<weight_vector_type, 4>
> +   bank_characteristics(const std::vector<unsigned> &map)
> +   {
> +      std::array<weight_vector_type, 4> banks;
> +
> +      for (unsigned b = 0; b < banks.size(); b++) {
> +         banks[b].resize(DIV_ROUND_UP(2 * map.size(), vector_width));
> +
> +         for (unsigned j = 0; j < map.size(); j++) {
> +            for (unsigned p = 0; p < 2; p++)
> +               set(banks[b], j, p,
> +                   (b ^ p) == bank_of(map[j]) ? -1 : 0);
> +         }
> +      }
> +
> +      return banks;
> +   }
> +
> +   /**
> +    * Return an improved permutation of GRF atoms based on \p map attempting
> +    * to reduce the total cycle-count cost of bank conflicts greedily.
> +    *
> +    * Note that this doesn't attempt to merge multiple atoms into one, which
> +    * may allow it to do a better job in some cases -- It simply reorders
> +    * existing atoms in the GRF space without affecting their identity.
> +    */
> +   std::vector<unsigned>
> +   optimize_reg_permutation(const partitioning &p,
> +                            const std::vector<bool> &constrained,
> +                            const std::vector<weight_vector_type> &conflicts,
> +                            std::vector<unsigned> map)
> +   {
> +      const std::vector<bool> any_conflicts = have_any_conflicts(conflicts);
> +      std::array<weight_vector_type, 4> banks = bank_characteristics(map);
> +
> +      for (unsigned r = 0; r < map.size(); r++) {
> +         const unsigned bank_r = bank_of(map[r]);
> +
> +         if (!constrained[r]) {
> +            unsigned best_s = r;
> +            int best_benefit = 0;
> +
> +            for (unsigned s = 0; s < map.size(); s++) {
> +               const unsigned bank_s = bank_of(map[s]);
> +
> +               if (bank_r != bank_s && !constrained[s] &&
> +                   p.size_of_atom(r) == p.size_of_atom(s) &&
> +                   (any_conflicts[r] || any_conflicts[s])) {
> +                  const int benefit =
> +                     delta_conflicts(banks[bank_r], banks[bank_s], 
> conflicts[r]) +
> +                     delta_conflicts(banks[bank_s], banks[bank_r], 
> conflicts[s]);
> +
> +                  if (benefit > best_benefit) {
> +                     best_s = s;
> +                     best_benefit = benefit;
> +                  }
> +               }
> +            }
> +
> +            if (best_s != r) {
> +               for (unsigned b = 0; b < banks.size(); b++) {
> +                  for (unsigned p = 0; p < 2; p++)
> +                     swap(banks[b], r, p, best_s, p);
> +               }
> +
> +               std::swap(map[r], map[best_s]);
> +            }
> +         }
> +      }
> +
> +      return map;
> +   }
> +
> +   /**
> +    * Apply the GRF atom permutation given by \p map to register \p r and
> +    * return the result.
> +    */
> +   fs_reg
> +   transform(const partitioning &p, const std::vector<unsigned> &map,
> +             fs_reg r)
> +   {
> +      if (r.file == VGRF) {
> +         const unsigned reg = reg_of(r);
> +         const unsigned s = p.atom_of_reg(reg);
> +         r.nr = map[s] + reg - p.reg_of_atom(s);
> +         r.offset = r.offset % REG_SIZE;
> +      }
> +
> +      return r;
> +   }
> +}
> +
> +bool
> +fs_visitor::opt_bank_conflicts()
> +{
> +   assert(grf_used || !"Must be called after register allocation");
> +
> +   /* No ternary instructions -- No bank conflicts. */
> +   if (devinfo->gen < 6)
> +      return false;
> +
> +   const partitioning p = shader_reg_partitioning(this);
> +   const std::vector<bool> constrained = shader_reg_constraints(this, p);
> +   const std::vector<weight_vector_type> conflicts =
> +      shader_conflict_weight_matrix(this, p);
> +   const std::vector<unsigned> map =
> +      optimize_reg_permutation(p, constrained, conflicts,
> +                               identity_reg_permutation(p));
> +
> +   foreach_block_and_inst(block, fs_inst, inst, cfg) {
> +      inst->dst = transform(p, map, inst->dst);
> +
> +      for (int i = 0; i < inst->sources; i++)
> +         inst->src[i] = transform(p, map, inst->src[i]);
> +   }
> +
> +   return true;
> +}
> -- 
> 2.10.2
>
> _______________________________________________
> mesa-dev mailing list
> mesa-dev@lists.freedesktop.org
> https://lists.freedesktop.org/mailman/listinfo/mesa-dev

Attachment: signature.asc
Description: PGP signature

_______________________________________________
mesa-dev mailing list
mesa-dev@lists.freedesktop.org
https://lists.freedesktop.org/mailman/listinfo/mesa-dev

Reply via email to