On Fri, 10 Apr 2020 03:33:42 -0700 (PDT), Thomas Brendan Leahy 
<[email protected]> wrote:
> I've deleted the proof itself, but to give you an idea, here's an HTML file 
> I made.
...

I'm trying to recover your proof of aacllem. Even after a few renames
I can't *quite* make it work in mmj2.

Below is the proof in mmj2 format.
mmj2 is reporting the following:
E-PA-0410 Theorem aacllem: Step 85: Unification failure in derivation proof 
step frlmgsum. The step's formula and/or its hypotheses could not be reconciled 
with the referenced Assertion. Try the Unify/Step Selector Search to find 
unifiable assertions for the step.

Suggestions? It's probably a tiny problem.

--- David A. Wheeler

========

$( <MM> <PROOF_ASST> THEOREM=aacllem  LOC_AFTER=?

* Lemma for other theorems about ` AA ` .
  Proof by Brendan Leahy, retyped by David A. Wheeler.
  (Contributed by Brendan Leahy , 3-Jan-2020.)

hh1::aacllem.0      |- ( ph -> A e. CC )
hh2::aacllem.1      |- ( ph -> N e. NN0 )
hh3::aacllem.2      |- (  ( ph /\ n e. ( 1 ... N ) )
                      -> X e. CC )
hh4::aacllem.3      |- (  ( ph /\ k e. ( 0 ... N ) /\ n e. ( 1 ... N ) )
                      -> C e. QQ )
hh5::aacllem.4      |- (  ( ph /\ k e. ( 0 ... N ) )
                      -> ( A ^ k ) = sum_ n e. ( 1 ... N ) ( C x. X ) )

3:h2:nn0red        |- ( ph -> N e. RR )
4:3:ltp1d          |- ( ph -> N < ( N + 1 ) )
5::peano2nn0       |- ( N e. NN0 -> ( N + 1 ) e. NN0 )
6:h2,5:syl         |- ( ph -> ( N + 1 ) e. NN0 )
7:6:nn0red         |- ( ph -> ( N + 1 ) e. RR )
8:3,7:ltnled       |- (  ph
                      -> (   N < ( N + 1 )
                         <-> -. ( N + 1 ) <_ N ) )
9:4,8:mpbid        |- (  ph
                      -> -. ( N + 1 ) <_ N )
11:h4:3expa        |- (  (  ( ph /\ k e. ( 0 ... N ) )
                         /\ n e. ( 1 ... N ) )
                      -> C e. QQ )
12::eqid           |- ( n e. ( 1 ... N ) |-> C ) = ( n e. ( 1 ... N ) |-> C )
13:11,12:fmptd     |- (  ( ph /\ k e. ( 0 ... N ) )
                      -> ( n e. ( 1 ... N ) |-> C ) : ( 1 ... N ) --> QQ )
14::qex            |- QQ e. _V
15::ovex           |- ( 1 ... N ) e. _V
16:14,15:elmap     |- (   ( n e. ( 1 ... N ) |-> C ) e. ( QQ ^m ( 1 ... N ) )
                      <-> ( n e. ( 1 ... N ) |-> C ) : ( 1 ... N ) --> QQ )
17:13,16:sylibr    |- (  ( ph /\ k e. ( 0 ... N ) )
                      -> ( n e. ( 1 ... N ) |-> C ) e. ( QQ ^m ( 1 ... N ) ) )
18::eqid           |-   ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) )
                      = ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) )
19:17,18:fmptd     |- (  ph
                      ->     (   k
                             e.  ( 0 ... N )
                             |-> ( n e. ( 1 ... N ) |-> C ) )
                         :   ( 0 ... N )
                         --> ( QQ ^m ( 1 ... N ) ) )
20::eqid           |- ( CCfld |`s QQ ) = ( CCfld |`s QQ )
21:20:qdrng        |- ( CCfld |`s QQ ) e. DivRing
22::drngring       |- (  ( CCfld |`s QQ ) e. DivRing
                      -> ( CCfld |`s QQ ) e. Ring )
23:21,22:ax-mp     |- ( CCfld |`s QQ ) e. Ring
24::fzfi           |- ( 1 ... N ) e. Fin
25::eqid           |-   ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) )
                      = ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) )
26:25:frlmlmod     |- (  ( ( CCfld |`s QQ ) e. Ring /\ ( 1 ... N ) e. Fin )
                      -> ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) e. LMod )
27:23,24,26:mp2an  |- ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) e. LMod
28::fzfi           |- ( 0 ... N ) e. Fin
29:20:qrngbas      |- QQ = ( Base ` ( CCfld |`s QQ ) )
30:25,29:frlmfibas |- (  ( ( CCfld |`s QQ ) e. DivRing /\ ( 1 ... N ) e. Fin )
                      ->   ( QQ ^m ( 1 ... N ) )
                         = ( Base ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) )
                      )
31:21,24,30:mp2an  |-   ( QQ ^m ( 1 ... N ) )
                      = ( Base ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) )
32:25:frlmsca      |- (  ( ( CCfld |`s QQ ) e. DivRing /\ ( 1 ... N ) e. Fin )
                      ->   ( CCfld |`s QQ )
                         = ( Scalar
                           ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) )
33:21,24,32:mp2an  |-   ( CCfld |`s QQ )
                      = ( Scalar ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) )
34::eqid           |-   ( .s ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) )
                      = ( .s ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) )
35:20:qrng0        |- 0 = ( 0g ` ( CCfld |`s QQ ) )
36:25,35:frlm0     |- (  ( ( CCfld |`s QQ ) e. Ring /\ ( 1 ... N ) e. Fin )
                      ->   ( ( 1 ... N ) X. { 0 } )
                         = ( 0g ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) )
37:23,24,36:mp2an  |-   ( ( 1 ... N ) X. { 0 } )
                      = ( 0g ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) )
38::eqid           |-   ( ( CCfld |`s QQ ) freeLMod ( 0 ... N ) )
                      = ( ( CCfld |`s QQ ) freeLMod ( 0 ... N ) )
39:38,29:frlmfibas |- (  ( ( CCfld |`s QQ ) e. DivRing /\ ( 0 ... N ) e. Fin )
                      ->   ( QQ ^m ( 0 ... N ) )
                         = ( Base ` ( ( CCfld |`s QQ ) freeLMod ( 0 ... N ) ) )
                      )
40:21,28,39:mp2an  |-   ( QQ ^m ( 0 ... N ) )
                      = ( Base ` ( ( CCfld |`s QQ ) freeLMod ( 0 ... N ) ) )
41:31,33,34,37,35,40:islindf4 
                   |- (  (  ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) e. LMod
                         /\ ( 0 ... N ) e. Fin
                         /\     (   k
                                e.  ( 0 ... N )
                                |-> ( n e. ( 1 ... N ) |-> C ) )
                            :   ( 0 ... N )
                            --> ( QQ ^m ( 1 ... N ) ) )
                      -> (   (   k
                             e.  ( 0 ... N )
                             |-> ( n e. ( 1 ... N ) |-> C ) )
                             LIndF
                             ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) )
                         <-> A. &S1
                             e. ( QQ ^m ( 0 ... N ) )
                                (    ( ( ( CCfld |`s QQ )
                                         freeLMod
                                         ( 1 ... N ) )
                                       gsum
                                       ( &S1
                                         oF ( .s
                                            ` ( ( CCfld |`s QQ )
                                                freeLMod
                                                ( 1 ... N ) ) )
                                         (   k
                                         e.  ( 0 ... N )
                                         |-> ( n e. ( 1 ... N ) |-> C ) ) ) )
                                   = ( ( 1 ... N ) X. { 0 } )
                                -> &S1 = ( ( 0 ... N ) X. { 0 } ) ) ) )
42:27,28,41:mp3an12 
                   |- (      (   k
                             e.  ( 0 ... N )
                             |-> ( n e. ( 1 ... N ) |-> C ) )
                         :   ( 0 ... N )
                         --> ( QQ ^m ( 1 ... N ) )
                      -> (   (   k
                             e.  ( 0 ... N )
                             |-> ( n e. ( 1 ... N ) |-> C ) )
                             LIndF
                             ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) )
                         <-> A. &S1
                             e. ( QQ ^m ( 0 ... N ) )
                                (    ( ( ( CCfld |`s QQ )
                                         freeLMod
                                         ( 1 ... N ) )
                                       gsum
                                       ( &S1
                                         oF ( .s
                                            ` ( ( CCfld |`s QQ )
                                                freeLMod
                                                ( 1 ... N ) ) )
                                         (   k
                                         e.  ( 0 ... N )
                                         |-> ( n e. ( 1 ... N ) |-> C ) ) ) )
                                   = ( ( 1 ... N ) X. { 0 } )
                                -> &S1 = ( ( 0 ... N ) X. { 0 } ) ) ) )
43:19,42:syl       |- (  ph
                      -> (   (   k
                             e.  ( 0 ... N )
                             |-> ( n e. ( 1 ... N ) |-> C ) )
                             LIndF
                             ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) )
                         <-> A. &S1
                             e. ( QQ ^m ( 0 ... N ) )
                                (    ( ( ( CCfld |`s QQ )
                                         freeLMod
                                         ( 1 ... N ) )
                                       gsum
                                       ( &S1
                                         oF ( .s
                                            ` ( ( CCfld |`s QQ )
                                                freeLMod
                                                ( 1 ... N ) ) )
                                         (   k
                                         e.  ( 0 ... N )
                                         |-> ( n e. ( 1 ... N ) |-> C ) ) ) )
                                   = ( ( 1 ... N ) X. { 0 } )
                                -> &S1 = ( ( 0 ... N ) X. { 0 } ) ) ) )
44::elmapi         |- (  &C37 e. ( QQ ^m ( 0 ... N ) )
                      -> &C37 : ( 0 ... N ) --> QQ )
45::fzfid          |- (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                      -> ( 0 ... N ) e. Fin )
46::fvex           |- ( &C37 ` k ) e. _V
47:46:a1i          |- (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                         /\ k e. ( 0 ... N ) )
                      -> ( &C37 ` k ) e. _V )
48:15:mptex        |- ( n e. ( 1 ... N ) |-> C ) e. _V
49:48:a1i          |- (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                         /\ k e. ( 0 ... N ) )
                      -> ( n e. ( 1 ... N ) |-> C ) e. _V )
50::simpr          |- (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                      -> &C37 : ( 0 ... N ) --> QQ )
51:50:feqmptd      |- (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                      -> &C37 = ( k e. ( 0 ... N ) |-> ( &C37 ` k ) ) )
52::eqidd          |- (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                      ->   ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) )
                         = ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) )
                      )
53:45,47,49,51,52:offval2 
                   |- (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                      ->   ( &C37
                             oF ( .s
                                ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) )
                             (   k
                             e.  ( 0 ... N )
                             |-> ( n e. ( 1 ... N ) |-> C ) ) )
                         = (   k
                           e.  ( 0 ... N )
                           |-> ( ( &C37 ` k )
                                 ( .s
                                 ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) )
                                 ( n e. ( 1 ... N ) |-> C ) ) ) )
54::fzfid          |- (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                         /\ k e. ( 0 ... N ) )
                      -> ( 1 ... N ) e. Fin )
55::ffvelrn        |- (  ( &C37 : ( 0 ... N ) --> QQ /\ k e. ( 0 ... N ) )
                      -> ( &C37 ` k ) e. QQ )
56:55:adantll      |- (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                         /\ k e. ( 0 ... N ) )
                      -> ( &C37 ` k ) e. QQ )
57:17:adantlr      |- (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                         /\ k e. ( 0 ... N ) )
                      -> ( n e. ( 1 ... N ) |-> C ) e. ( QQ ^m ( 1 ... N ) ) )
58::cnfldmul       |- x. = ( .r ` CCfld )
59:20,58:ressmulr  |- (  QQ e. _V
                      -> x. = ( .r ` ( CCfld |`s QQ ) ) )
60:14,59:ax-mp     |- x. = ( .r ` ( CCfld |`s QQ ) )
61:25,31,29,54,56,57,34,60:frlmvscafval 
                   |- (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                         /\ k e. ( 0 ... N ) )
                      ->   ( ( &C37 ` k )
                             ( .s ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) )
                             ( n e. ( 1 ... N ) |-> C ) )
                         = ( ( ( 1 ... N ) X. { ( &C37 ` k ) } )
                             oF x.
                             ( n e. ( 1 ... N ) |-> C ) ) )
62:46:a1i          |- (  (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                            /\ k e. ( 0 ... N ) )
                         /\ n e. ( 1 ... N ) )
                      -> ( &C37 ` k ) e. _V )
63:11:adantllr     |- (  (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                            /\ k e. ( 0 ... N ) )
                         /\ n e. ( 1 ... N ) )
                      -> C e. QQ )
64::fconstmpt      |-   ( ( 1 ... N ) X. { ( &C37 ` k ) } )
                      = ( n e. ( 1 ... N ) |-> ( &C37 ` k ) )
65:64:a1i          |- (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                         /\ k e. ( 0 ... N ) )
                      ->   ( ( 1 ... N ) X. { ( &C37 ` k ) } )
                         = ( n e. ( 1 ... N ) |-> ( &C37 ` k ) ) )
66::eqidd          |- (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                         /\ k e. ( 0 ... N ) )
                      ->   ( n e. ( 1 ... N ) |-> C )
                         = ( n e. ( 1 ... N ) |-> C ) )
67:54,62,63,65,66:offval2 
                   |- (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                         /\ k e. ( 0 ... N ) )
                      ->   ( ( ( 1 ... N ) X. { ( &C37 ` k ) } )
                             oF x.
                             ( n e. ( 1 ... N ) |-> C ) )
                         = ( n e. ( 1 ... N ) |-> ( ( &C37 ` k ) x. C ) ) )
68:61,67:eqtrd     |- (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                         /\ k e. ( 0 ... N ) )
                      ->   ( ( &C37 ` k )
                             ( .s ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) )
                             ( n e. ( 1 ... N ) |-> C ) )
                         = ( n e. ( 1 ... N ) |-> ( ( &C37 ` k ) x. C ) ) )
69:68:mpteq2dva    |- (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                      ->   (   k
                           e.  ( 0 ... N )
                           |-> ( ( &C37 ` k )
                                 ( .s
                                 ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) )
                                 ( n e. ( 1 ... N ) |-> C ) ) )
                         = (   k
                           e.  ( 0 ... N )
                           |-> ( n e. ( 1 ... N ) |-> ( ( &C37 ` k ) x. C ) ) )
                      )
70:53,69:eqtrd     |- (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                      ->   ( &C37
                             oF ( .s
                                ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) )
                             (   k
                             e.  ( 0 ... N )
                             |-> ( n e. ( 1 ... N ) |-> C ) ) )
                         = (   k
                           e.  ( 0 ... N )
                           |-> ( n e. ( 1 ... N ) |-> ( ( &C37 ` k ) x. C ) ) )
                      )
71:70:oveq2d       |- (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                      ->   ( &C6
                             &C7
                             ( &C37
                               oF ( .s
                                  ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) )
                               (   k
                               e.  ( 0 ... N )
                               |-> ( n e. ( 1 ... N ) |-> C ) ) ) )
                         = ( &C6
                             &C7
                             (   k
                             e.  ( 0 ... N )
                             |-> ( n e. ( 1 ... N ) |-> ( ( &C37 ` k ) x. C ) )
                             ) ) )
72::fzfid          |- (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                      -> ( 1 ... N ) e. Fin )
73:23:a1i          |- ( &W3 -> ( CCfld |`s QQ ) e. Ring )
74:56:adantlr      |- (  (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                            /\ n e. ( 1 ... N ) )
                         /\ k e. ( 0 ... N ) )
                      -> ( &C37 ` k ) e. QQ )
75:11:an32s        |- (  (  ( ph /\ n e. ( 1 ... N ) )
                         /\ k e. ( 0 ... N ) )
                      -> C e. QQ )
76:75:adantllr     |- (  (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                            /\ n e. ( 1 ... N ) )
                         /\ k e. ( 0 ... N ) )
                      -> C e. QQ )
77::qmulcl         |- (  ( ( &C37 ` k ) e. QQ /\ C e. QQ )
                      -> ( ( &C37 ` k ) x. C ) e. QQ )
78:74,76,77:syl2anc 
                   |- (  (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                            /\ n e. ( 1 ... N ) )
                         /\ k e. ( 0 ... N ) )
                      -> ( ( &C37 ` k ) x. C ) e. QQ )
79:78:an32s        |- (  (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                            /\ k e. ( 0 ... N ) )
                         /\ n e. ( 1 ... N ) )
                      -> ( ( &C37 ` k ) x. C ) e. QQ )
80::eqid           |-   ( n e. ( 1 ... N ) |-> ( ( &C37 ` k ) x. C ) )
                      = ( n e. ( 1 ... N ) |-> ( ( &C37 ` k ) x. C ) )
81:79,80:fmptd     |- (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                         /\ k e. ( 0 ... N ) )
                      ->     ( n e. ( 1 ... N ) |-> ( ( &C37 ` k ) x. C ) )
                         :   ( 1 ... N )
                         --> QQ )
82:14,15:elmap     |- (      ( n e. ( 1 ... N ) |-> ( ( &C37 ` k ) x. C ) )
                          e. ( QQ ^m ( 1 ... N ) )
                      <->     ( n e. ( 1 ... N ) |-> ( ( &C37 ` k ) x. C ) )
                          :   ( 1 ... N )
                          --> QQ )
83:81,82:sylibr    |- (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                         /\ k e. ( 0 ... N ) )
                      ->    ( n e. ( 1 ... N ) |-> ( ( &C37 ` k ) x. C ) )
                         e. ( QQ ^m ( 1 ... N ) ) )
84:45:cnvimamptfin |- (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                      ->    ( `' ( &S2 e. ( 0 ... N ) |-> &C12 )
                            " &C13 )
                         e. Fin )
85:25,31,37,72,45,73,83,84:frlmgsum
86::cnfldbas       |- CC = ( Base ` CCfld )
87::cnfldadd       |- + = ( +g ` CCfld )
88::cnfldex        |- CCfld e. _V
89:88:a1i          |- (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                         /\ n e. ( 1 ... N ) )
                      -> CCfld e. _V )
90::fzfid          |- (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                         /\ n e. ( 1 ... N ) )
                      -> ( 0 ... N ) e. Fin )
91::qsscn          |- QQ C_ CC
92:91:a1i          |- (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                         /\ n e. ( 1 ... N ) )
                      -> QQ C_ CC )
93::eqid           |-   ( k e. ( 0 ... N ) |-> ( ( &C37 ` k ) x. C ) )
                      = ( k e. ( 0 ... N ) |-> ( ( &C37 ` k ) x. C ) )
94:78,93:fmptd     |- (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                         /\ n e. ( 1 ... N ) )
                      ->     ( k e. ( 0 ... N ) |-> ( ( &C37 ` k ) x. C ) )
                         :   ( 0 ... N )
                         --> QQ )
95::0z             |- 0 e. ZZ
96::zq             |- ( 0 e. ZZ -> 0 e. QQ )
97:95,96:ax-mp     |- 0 e. QQ
98:97:a1i          |- (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                         /\ n e. ( 1 ... N ) )
                      -> 0 e. QQ )
99::addid2         |- ( &S3 e. CC -> ( 0 + &S3 ) = &S3 )
100::addid1        |- ( &S3 e. CC -> ( &S3 + 0 ) = &S3 )
101:99,100:jca     |- (  &S3 e. CC
                      -> ( ( 0 + &S3 ) = &S3 /\ ( &S3 + 0 ) = &S3 ) )
102:101:adantl     |- (  (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                            /\ n e. ( 1 ... N ) )
                         /\ &S3 e. CC )
                      -> ( ( 0 + &S3 ) = &S3 /\ ( &S3 + 0 ) = &S3 ) )
103:86,87,20,89,90,92,94,98,102:gsumress 
                   |- (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                         /\ n e. ( 1 ... N ) )
                      ->   ( CCfld
                             gsum
                             ( k e. ( 0 ... N ) |-> ( ( &C37 ` k ) x. C ) ) )
                         = ( ( CCfld |`s QQ )
                             gsum
                             ( k e. ( 0 ... N ) |-> ( ( &C37 ` k ) x. C ) ) ) )
104::simplr        |- (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                         /\ n e. ( 1 ... N ) )
                      -> &C37 : ( 0 ... N ) --> QQ )
105::qcn           |- ( ( &C37 ` k ) e. QQ -> ( &C37 ` k ) e. CC )
106:55,105:syl     |- (  ( &C37 : ( 0 ... N ) --> QQ /\ k e. ( 0 ... N ) )
                      -> ( &C37 ` k ) e. CC )
107:104,106:sylan  |- (  (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                            /\ n e. ( 1 ... N ) )
                         /\ k e. ( 0 ... N ) )
                      -> ( &C37 ` k ) e. CC )
108::qcn           |- ( C e. QQ -> C e. CC )
109:11,108:syl     |- (  (  ( ph /\ k e. ( 0 ... N ) )
                         /\ n e. ( 1 ... N ) )
                      -> C e. CC )
110:109:an32s      |- (  (  ( ph /\ n e. ( 1 ... N ) )
                         /\ k e. ( 0 ... N ) )
                      -> C e. CC )
111:110:adantllr   |- (  (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                            /\ n e. ( 1 ... N ) )
                         /\ k e. ( 0 ... N ) )
                      -> C e. CC )
112:107,111:mulcld |- (  (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                            /\ n e. ( 1 ... N ) )
                         /\ k e. ( 0 ... N ) )
                      -> ( ( &C37 ` k ) x. C ) e. CC )
113:90,112:gsumfsum 
                   |- (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                         /\ n e. ( 1 ... N ) )
                      ->   ( CCfld
                             gsum
                             ( k e. ( 0 ... N ) |-> ( ( &C37 ` k ) x. C ) ) )
                         = sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. C ) )
114:103,113:eqtr3d |- (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                         /\ n e. ( 1 ... N ) )
                      ->   ( ( CCfld |`s QQ )
                             gsum
                             ( k e. ( 0 ... N ) |-> ( ( &C37 ` k ) x. C ) ) )
                         = sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. C ) )
115:114:mpteq2dva  |- (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                      ->   (   n
                           e.  ( 1 ... N )
                           |-> ( ( CCfld |`s QQ )
                                 gsum
                                 ( k e. ( 0 ... N ) |-> ( ( &C37 ` k ) x. C ) )
                               ) )
                         = (   n
                           e.  ( 1 ... N )
                           |-> sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. C ) ) )
116:71,85,115:3eqtrd
117::qaddcl        |- ( ( &S4 e. QQ /\ &S5 e. QQ ) -> ( &S4 + &S5 ) e. QQ )
118:117:adantl     |- (  (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                            /\ n e. ( 1 ... N ) )
                         /\ ( &S4 e. QQ /\ &S5 e. QQ ) )
                      -> ( &S4 + &S5 ) e. QQ )
119:92,118,90,78,98:fsumcllem 
                   |- (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                         /\ n e. ( 1 ... N ) )
                      ->    sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. C )
                         e. QQ )
120::eqid          |-   (   n
                        e.  ( 1 ... N )
                        |-> sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. C ) )
                      = (   n
                        e.  ( 1 ... N )
                        |-> sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. C ) )
121:119,120:fmptd  |- (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                      ->     (   n
                             e.  ( 1 ... N )
                             |-> sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. C ) )
                         :   ( 1 ... N )
                         --> QQ )
122:14,15:elmap    |- (      (   n
                             e.  ( 1 ... N )
                             |-> sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. C ) )
                          e. ( QQ ^m ( 1 ... N ) )
                      <->     (   n
                              e.  ( 1 ... N )
                              |-> sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. C ) )
                          :   ( 1 ... N )
                          --> QQ )
123:121,122:sylibr |- (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                      ->    (   n
                            e.  ( 1 ... N )
                            |-> sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. C ) )
                         e. ( QQ ^m ( 1 ... N ) ) )
124:116,123:eqeltrd
125::elmapi        |- ( &C15 e. ( &C16 ^m &C17 ) -> &C15 : &C17 --> &C16 )
126::ffn           |- ( &C20 : &C18 --> &C19 -> &C20 Fn &C18 )
127:124,125,126:3syl
128::c0ex          |- 0 e. _V
129::fnconstg      |- (  0 e. _V
                      -> ( &C21 X. { 0 } ) Fn &C21 )
130:128,129:ax-mp  |- ( &C21 X. { 0 } ) Fn &C21
131::nfcv          |- F/_ &S6 &C22
132::nfcv          |- F/_ &S6 &C23
133::nfcv          |- F/_ &S6 &C24
134::nfcv          |- F/_ &S6 &C25
135::nfcv          |- F/_ &S6 &C26
136::nfmpt1        |- F/_ &S6 ( &S6 e. &C27 |-> &C28 )
137:135,136:nfmpt  |- F/_ &S6 ( &S13 e. &C26 |-> ( &S6 e. &C27 |-> &C28 ) )
138:133,134,137:nfov 
                   |- F/_ &S6
                          ( &C24
                            &C25
                            ( &S13 e. &C26 |-> ( &S6 e. &C27 |-> &C28 ) ) )
139:131,132,138:nfov 
                   |- F/_ &S6
                          ( &C22
                            &C23
                            ( &C24
                              &C25
                              ( &S13 e. &C26 |-> ( &S6 e. &C27 |-> &C28 ) ) ) )
140::nfcv          |- F/_ &S6 &C29
141:139,140:eqfnfv2f 
                   |- (  (     ( &C22
                                 &C23
                                 ( &C24
                                   &C25
                                   (   &S13
                                   e.  &C26
                                   |-> ( &S6 e. &C27 |-> &C28 ) ) ) )
                            Fn &C30
                         /\ &C29 Fn &C30 )
                      -> (     ( &C22
                                 &C23
                                 ( &C24
                                   &C25
                                   (   &S13
                                   e.  &C26
                                   |-> ( &S6 e. &C27 |-> &C28 ) ) ) )
                             = &C29
                         <-> A. &S6
                             e. &C30
                                  ( ( &C22
                                      &C23
                                      ( &C24
                                        &C25
                                        (   &S13
                                        e.  &C26
                                        |-> ( &S6 e. &C27 |-> &C28 ) ) ) )
                                  ` &S6 )
                                = ( &C29 ` &S6 ) ) )
142:127,130,141:sylancl
143:116:fveq1d
144::sumex         |-    sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. C )
                      e. _V
145:120:fvmpt2     |- (  (  n e. ( 1 ... N )
                         /\    sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. C )
                            e. _V )
                      ->   ( (   n
                             e.  ( 1 ... N )
                             |-> sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. C ) )
                           ` n )
                         = sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. C ) )
146:144,145:mpan2  |- (  n e. ( 1 ... N )
                      ->   ( (   n
                             e.  ( 1 ... N )
                             |-> sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. C ) )
                           ` n )
                         = sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. C ) )
147:143,146:sylan9eq
148:128:fvconst2   |- (  &C33 e. &C31
                      ->   ( ( &C31 X. { 0 } ) ` &C33 )
                         = 0 )
149:148:adantl     |- (  ( &W5 /\ &C33 e. &C31 )
                      ->   ( ( &C31 X. { 0 } ) ` &C33 )
                         = 0 )
150:147,149:eqeq12d
151:150:ralbidva
152:142,151:bitrd
153:152:imbi1d
154:44,153:sylan2
155:154:ralbidva
156:43,155:bitrd
157::drngnzr       |- (  ( CCfld |`s QQ ) e. DivRing
                      -> ( CCfld |`s QQ ) e. NzRing )
158:21,157:ax-mp   |- ( CCfld |`s QQ ) e. NzRing
159:33:islindf3    |- (  (  ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) e. LMod
                         /\ ( CCfld |`s QQ ) e. NzRing )
                      -> (   (   k
                             e.  ( 0 ... N )
                             |-> ( n e. ( 1 ... N ) |-> C ) )
                             LIndF
                             ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) )
                         <-> (         (   k
                                       e.  ( 0 ... N )
                                       |-> ( n e. ( 1 ... N ) |-> C ) )
                                :      dom (   k
                                           e.  ( 0 ... N )
                                           |-> ( n e. ( 1 ... N ) |-> C ) )
                                -1-1-> _V
                             /\    ran (   k
                                       e.  ( 0 ... N )
                                       |-> ( n e. ( 1 ... N ) |-> C ) )
                                e. ( LIndS
                                   ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) )
                                   ) ) ) )
160:27,158,159:mp2an 
                   |- (   ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) )
                          LIndF
                          ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) )
                      <-> (         (   k
                                    e.  ( 0 ... N )
                                    |-> ( n e. ( 1 ... N ) |-> C ) )
                             :      dom (   k
                                        e.  ( 0 ... N )
                                        |-> ( n e. ( 1 ... N ) |-> C ) )
                             -1-1-> _V
                          /\    ran (   k
                                    e.  ( 0 ... N )
                                    |-> ( n e. ( 1 ... N ) |-> C ) )
                             e. ( LIndS
                                ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) )
                      )
161:48,18:dmmpti   |-   dom ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) )
                      = ( 0 ... N )
162::f1eq2         |- (    dom (   k
                               e.  ( 0 ... N )
                               |-> ( n e. ( 1 ... N ) |-> C ) )
                         = ( 0 ... N )
                      -> (          (   k
                                    e.  ( 0 ... N )
                                    |-> ( n e. ( 1 ... N ) |-> C ) )
                             :      dom (   k
                                        e.  ( 0 ... N )
                                        |-> ( n e. ( 1 ... N ) |-> C ) )
                             -1-1-> _V
                         <->        (   k
                                    e.  ( 0 ... N )
                                    |-> ( n e. ( 1 ... N ) |-> C ) )
                             :      ( 0 ... N )
                             -1-1-> _V ) )
163:161,162:ax-mp  |- (          (   k
                                 e.  ( 0 ... N )
                                 |-> ( n e. ( 1 ... N ) |-> C ) )
                          :      dom (   k
                                     e.  ( 0 ... N )
                                     |-> ( n e. ( 1 ... N ) |-> C ) )
                          -1-1-> _V
                      <->        (   k
                                 e.  ( 0 ... N )
                                 |-> ( n e. ( 1 ... N ) |-> C ) )
                          :      ( 0 ... N )
                          -1-1-> _V )
164:163:anbi1i     |- (   (         (   k
                                    e.  ( 0 ... N )
                                    |-> ( n e. ( 1 ... N ) |-> C ) )
                             :      dom (   k
                                        e.  ( 0 ... N )
                                        |-> ( n e. ( 1 ... N ) |-> C ) )
                             -1-1-> _V
                          /\    ran (   k
                                    e.  ( 0 ... N )
                                    |-> ( n e. ( 1 ... N ) |-> C ) )
                             e. ( LIndS
                                ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) )
                      <-> (         (   k
                                    e.  ( 0 ... N )
                                    |-> ( n e. ( 1 ... N ) |-> C ) )
                             :      ( 0 ... N )
                             -1-1-> _V
                          /\    ran (   k
                                    e.  ( 0 ... N )
                                    |-> ( n e. ( 1 ... N ) |-> C ) )
                             e. ( LIndS
                                ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) )
                      )
165:160,164:bitri  |- (   ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) )
                          LIndF
                          ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) )
                      <-> (         (   k
                                    e.  ( 0 ... N )
                                    |-> ( n e. ( 1 ... N ) |-> C ) )
                             :      ( 0 ... N )
                             -1-1-> _V
                          /\    ran (   k
                                    e.  ( 0 ... N )
                                    |-> ( n e. ( 1 ... N ) |-> C ) )
                             e. ( LIndS
                                ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) )
                      )
166::con34b        |- (   ( &W6 -> &S10 = &C35 )
                      <-> ( -. &S10 = &C35 -> -. &W6 ) )
167::df-nel        |- (   &S10 e/ { &C35 }
                      <-> -. &S10 e. { &C35 } )
168::elsn          |- ( &S10 e. { &C35 } <-> &S10 = &C35 )
169:167,168:xchbinx 
                   |- ( &S10 e/ { &C35 } <-> -. &S10 = &C35 )
170:169:imbi1i     |- (   ( &S10 e/ { &C35 } -> -. &W6 )
                      <-> ( -. &S10 = &C35 -> -. &W6 ) )
171:166,170:bitr4i |- (   ( &W6 -> &S10 = &C35 )
                      <-> ( &S10 e/ { &C35 } -> -. &W6 ) )
172:171:ralbii     |- (   A. &S10 e. &C34 ( &W6 -> &S10 = &C35 )
                      <-> A. &S10
                          e. &C34
                             ( &S10 e/ { &C35 } -> -. &W6 ) )
173::raldifb       |- (   A. &S10
                          e. &C34
                             ( &S10 e/ { &C35 } -> -. &W6 )
                      <-> A. &S10 e. ( &C34 \ { &C35 } ) -. &W6 )
174::ralnex        |- (   A. &S10 e. ( &C34 \ { &C35 } ) -. &W6
                      <-> -. E. &S10 e. ( &C34 \ { &C35 } ) &W6 )
175:172,173,174:3bitri 
                   |- (   A. &S10 e. &C34 ( &W6 -> &S10 = &C35 )
                      <-> -. E. &S10 e. ( &C34 \ { &C35 } ) &W6 )
176:156,165,175:3bitr3g
177::eqid          |-   ( LSubSp ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) )
                      = ( LSubSp ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) )
178:31,177:lssmre  |- (  ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) e. LMod
                      ->    ( LSubSp
                            ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) )
                         e. ( Moore ` ( QQ ^m ( 1 ... N ) ) ) )
179:27,178:ax-mp   |-    ( LSubSp ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) )
                      e. ( Moore ` ( QQ ^m ( 1 ... N ) ) )
180:179:a1i        |- (  (  ph
                         /\    ran (   k
                                   e.  ( 0 ... N )
                                   |-> ( n e. ( 1 ... N ) |-> C ) )
                            e. ( LIndS
                               ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) )
                      ->    ( LSubSp
                            ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) )
                         e. ( Moore ` ( QQ ^m ( 1 ... N ) ) ) )
181::eqid          |-   ( LSpan ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) )
                      = ( LSpan ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) )
182::eqid          |-   ( mrCls
                        ` ( LSubSp
                          ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) )
                      = ( mrCls
                        ` ( LSubSp
                          ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) )
183:177,181,182:mrclsp 
                   |- (  ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) e. LMod
                      ->   ( LSpan
                           ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) )
                         = ( mrCls
                           ` ( LSubSp
                             ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ) )
184:27,183:ax-mp   |-   ( LSpan ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) )
                      = ( mrCls
                        ` ( LSubSp
                          ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) )
185::eqid          |-   ( mrInd
                        ` ( LSubSp
                          ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) )
                      = ( mrInd
                        ` ( LSubSp
                          ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) )
186:33:islvec      |- (   ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) e. LVec
                      <-> (  ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) e. LMod
                          /\ ( CCfld |`s QQ ) e. DivRing ) )
187:27,21,186:mpbir2an 
                   |- ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) e. LVec
188:177,184,31:lssacsex 
                   |- (  ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) e. LVec
                      -> (     ( LSubSp
                               ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) )
                            e. ( ACS ` ( QQ ^m ( 1 ... N ) ) )
                         /\ A. &S9
                            e. ~P ( QQ ^m ( 1 ... N ) )
                               A. &S7
                               e. ( QQ ^m ( 1 ... N ) )
                                  A. &S8
                                  e. ( ( ( LSpan
                                         ` ( ( CCfld |`s QQ )
                                             freeLMod
                                             ( 1 ... N ) ) )
                                       ` ( &S9 u. { &S7 } ) )
                                     \ ( ( LSpan
                                         ` ( ( CCfld |`s QQ )
                                             freeLMod
                                             ( 1 ... N ) ) )
                                       ` &S9 ) )
                                        &S7
                                     e. ( ( LSpan
                                          ` ( ( CCfld |`s QQ )
                                              freeLMod
                                              ( 1 ... N ) ) )
                                        ` ( &S9 u. { &S8 } ) ) ) )
189:188:simprd     |- (  ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) e. LVec
                      -> A. &S9
                         e. ~P ( QQ ^m ( 1 ... N ) )
                            A. &S7
                            e. ( QQ ^m ( 1 ... N ) )
                               A. &S8
                               e. ( ( ( LSpan
                                      ` ( ( CCfld |`s QQ )
                                          freeLMod
                                          ( 1 ... N ) ) )
                                    ` ( &S9 u. { &S7 } ) )
                                  \ ( ( LSpan
                                      ` ( ( CCfld |`s QQ )
                                          freeLMod
                                          ( 1 ... N ) ) )
                                    ` &S9 ) )
                                     &S7
                                  e. ( ( LSpan
                                       ` ( ( CCfld |`s QQ )
                                           freeLMod
                                           ( 1 ... N ) ) )
                                     ` ( &S9 u. { &S8 } ) ) )
190:187,189:ax-mp  |- A. &S9
                      e. ~P ( QQ ^m ( 1 ... N ) )
                         A. &S7
                         e. ( QQ ^m ( 1 ... N ) )
                            A. &S8
                            e. ( ( ( LSpan
                                   ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) )
                                   )
                                 ` ( &S9 u. { &S7 } ) )
                               \ ( ( LSpan
                                   ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) )
                                   )
                                 ` &S9 ) )
                                  &S7
                               e. ( ( LSpan
                                    ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) )
                                    )
                                  ` ( &S9 u. { &S8 } ) )
191:190:a1i        |- (  (  ph
                         /\    ran (   k
                                   e.  ( 0 ... N )
                                   |-> ( n e. ( 1 ... N ) |-> C ) )
                            e. ( LIndS
                               ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) )
                      -> A. &S9
                         e. ~P ( QQ ^m ( 1 ... N ) )
                            A. &S7
                            e. ( QQ ^m ( 1 ... N ) )
                               A. &S8
                               e. ( ( ( LSpan
                                      ` ( ( CCfld |`s QQ )
                                          freeLMod
                                          ( 1 ... N ) ) )
                                    ` ( &S9 u. { &S7 } ) )
                                  \ ( ( LSpan
                                      ` ( ( CCfld |`s QQ )
                                          freeLMod
                                          ( 1 ... N ) ) )
                                    ` &S9 ) )
                                     &S7
                                  e. ( ( LSpan
                                       ` ( ( CCfld |`s QQ )
                                           freeLMod
                                           ( 1 ... N ) ) )
                                     ` ( &S9 u. { &S8 } ) ) )
192::frn           |- (      (   k
                             e.  ( 0 ... N )
                             |-> ( n e. ( 1 ... N ) |-> C ) )
                         :   ( 0 ... N )
                         --> ( QQ ^m ( 1 ... N ) )
                      ->    ran (   k
                                e.  ( 0 ... N )
                                |-> ( n e. ( 1 ... N ) |-> C ) )
                         C_ ( QQ ^m ( 1 ... N ) ) )
193:19,192:syl     |- (  ph
                      ->    ran (   k
                                e.  ( 0 ... N )
                                |-> ( n e. ( 1 ... N ) |-> C ) )
                         C_ ( QQ ^m ( 1 ... N ) ) )
194::dif0          |-   ( ( QQ ^m ( 1 ... N ) ) \ (/) )
                      = ( QQ ^m ( 1 ... N ) )
195:193,194:syl6sseqr 
                   |- (  ph
                      ->    ran (   k
                                e.  ( 0 ... N )
                                |-> ( n e. ( 1 ... N ) |-> C ) )
                         C_ ( ( QQ ^m ( 1 ... N ) ) \ (/) ) )
196:195:adantr     |- (  (  ph
                         /\    ran (   k
                                   e.  ( 0 ... N )
                                   |-> ( n e. ( 1 ... N ) |-> C ) )
                            e. ( LIndS
                               ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) )
                      ->    ran (   k
                                e.  ( 0 ... N )
                                |-> ( n e. ( 1 ... N ) |-> C ) )
                         C_ ( ( QQ ^m ( 1 ... N ) ) \ (/) ) )
197::eqid          |-   ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) )
                      = ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) )
198:197,25,31:uvcff 
                   |- (  ( ( CCfld |`s QQ ) e. Ring /\ ( 1 ... N ) e. Fin )
                      ->     ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) )
                         :   ( 1 ... N )
                         --> ( QQ ^m ( 1 ... N ) ) )
199:23,24,198:mp2an 
                   |-     ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) )
                      :   ( 1 ... N )
                      --> ( QQ ^m ( 1 ... N ) )
200::frn           |- (      ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) )
                         :   ( 1 ... N )
                         --> ( QQ ^m ( 1 ... N ) )
                      ->    ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) )
                         C_ ( QQ ^m ( 1 ... N ) ) )
201:199,200:ax-mp  |-    ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) )
                      C_ ( QQ ^m ( 1 ... N ) )
202:201,194:sseqtr4i 
                   |-    ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) )
                      C_ ( ( QQ ^m ( 1 ... N ) ) \ (/) )
203:202:a1i        |- (  (  ph
                         /\    ran (   k
                                   e.  ( 0 ... N )
                                   |-> ( n e. ( 1 ... N ) |-> C ) )
                            e. ( LIndS
                               ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) )
                      ->    ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) )
                         C_ ( ( QQ ^m ( 1 ... N ) ) \ (/) ) )
204::un0           |-   (  ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) )
                        u. (/) )
                      = ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) )
205:204:fveq2i     |-   ( ( LSpan ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) )
                        ` (  ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) )
                          u. (/) ) )
                      = ( ( LSpan ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) )
                        ` ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) )
206::eqid          |-   ( LBasis ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) )
                      = ( LBasis ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) )
207:25,197,206:frlmlbs 
                   |- (  ( ( CCfld |`s QQ ) e. Ring /\ ( 1 ... N ) e. Fin )
                      ->    ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) )
                         e. ( LBasis
                            ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) )
208:23,24,207:mp2an 
                   |-    ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) )
                      e. ( LBasis ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) )
209:31,206,181:lbssp 
                   |- (     ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) )
                         e. ( LBasis
                            ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) )
                      ->   ( ( LSpan
                             ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) )
                           ` ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) )
                         = ( QQ ^m ( 1 ... N ) ) )
210:208,209:ax-mp  |-   ( ( LSpan ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) )
                        ` ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) )
                      = ( QQ ^m ( 1 ... N ) )
211:205,210:eqtri  |-   ( ( LSpan ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) )
                        ` (  ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) )
                          u. (/) ) )
                      = ( QQ ^m ( 1 ... N ) )
212:193,211:syl6sseqr 
                   |- (  ph
                      ->    ran (   k
                                e.  ( 0 ... N )
                                |-> ( n e. ( 1 ... N ) |-> C ) )
                         C_ ( ( LSpan
                              ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) )
                            ` (  ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) )
                              u. (/) ) ) )
213:212:adantr     |- (  (  ph
                         /\    ran (   k
                                   e.  ( 0 ... N )
                                   |-> ( n e. ( 1 ... N ) |-> C ) )
                            e. ( LIndS
                               ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) )
                      ->    ran (   k
                                e.  ( 0 ... N )
                                |-> ( n e. ( 1 ... N ) |-> C ) )
                         C_ ( ( LSpan
                              ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) )
                            ` (  ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) )
                              u. (/) ) ) )
214::un0           |-   (  ran (   k
                               e.  ( 0 ... N )
                               |-> ( n e. ( 1 ... N ) |-> C ) )
                        u. (/) )
                      = ran ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) )
215:27,158:pm3.2i  |- (  ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) e. LMod
                      /\ ( CCfld |`s QQ ) e. NzRing )
216:181,33:lindsind2 
                   |- (  (  (     ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) )
                               e. LMod
                            /\ ( CCfld |`s QQ ) e. NzRing )
                         /\    ran (   k
                                   e.  ( 0 ... N )
                                   |-> ( n e. ( 1 ... N ) |-> C ) )
                            e. ( LIndS
                               ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) )
                         /\    &S12
                            e. ran (   k
                                   e.  ( 0 ... N )
                                   |-> ( n e. ( 1 ... N ) |-> C ) ) )
                      -> -.    &S12
                            e. ( ( LSpan
                                 ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) )
                               ` ( ran (   k
                                       e.  ( 0 ... N )
                                       |-> ( n e. ( 1 ... N ) |-> C ) )
                                 \ { &S12 } ) ) )
217:215,216:mp3an1 |- (  (     ran (   k
                                   e.  ( 0 ... N )
                                   |-> ( n e. ( 1 ... N ) |-> C ) )
                            e. ( LIndS
                               ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) )
                         /\    &S12
                            e. ran (   k
                                   e.  ( 0 ... N )
                                   |-> ( n e. ( 1 ... N ) |-> C ) ) )
                      -> -.    &S12
                            e. ( ( LSpan
                                 ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) )
                               ` ( ran (   k
                                       e.  ( 0 ... N )
                                       |-> ( n e. ( 1 ... N ) |-> C ) )
                                 \ { &S12 } ) ) )
218:217:ralrimiva  |- (     ran (   k
                                e.  ( 0 ... N )
                                |-> ( n e. ( 1 ... N ) |-> C ) )
                         e. ( LIndS
                            ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) )
                      -> A. &S12
                         e. ran (   k
                                e.  ( 0 ... N )
                                |-> ( n e. ( 1 ... N ) |-> C ) )
                            -.    &S12
                               e. ( ( LSpan
                                    ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) )
                                    )
                                  ` ( ran (   k
                                          e.  ( 0 ... N )
                                          |-> ( n e. ( 1 ... N ) |-> C ) )
                                    \ { &S12 } ) ) )
219:184,185:ismri2 |- (  (     ( LSubSp
                               ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) )
                            e. ( Moore ` ( QQ ^m ( 1 ... N ) ) )
                         /\    ran (   k
                                   e.  ( 0 ... N )
                                   |-> ( n e. ( 1 ... N ) |-> C ) )
                            C_ ( QQ ^m ( 1 ... N ) ) )
                      -> (      ran (   k
                                    e.  ( 0 ... N )
                                    |-> ( n e. ( 1 ... N ) |-> C ) )
                             e. ( mrInd
                                ` ( LSubSp
                                  ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) )
                                )
                         <-> A. &S12
                             e. ran (   k
                                    e.  ( 0 ... N )
                                    |-> ( n e. ( 1 ... N ) |-> C ) )
                                -.    &S12
                                   e. ( ( LSpan
                                        ` ( ( CCfld |`s QQ )
                                            freeLMod
                                            ( 1 ... N ) ) )
                                      ` ( ran (   k
                                              e.  ( 0 ... N )
                                              |-> ( n e. ( 1 ... N ) |-> C ) )
                                        \ { &S12 } ) ) ) )
220:179,193,219:sylancr 
                   |- (  ph
                      -> (      ran (   k
                                    e.  ( 0 ... N )
                                    |-> ( n e. ( 1 ... N ) |-> C ) )
                             e. ( mrInd
                                ` ( LSubSp
                                  ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) )
                                )
                         <-> A. &S12
                             e. ran (   k
                                    e.  ( 0 ... N )
                                    |-> ( n e. ( 1 ... N ) |-> C ) )
                                -.    &S12
                                   e. ( ( LSpan
                                        ` ( ( CCfld |`s QQ )
                                            freeLMod
                                            ( 1 ... N ) ) )
                                      ` ( ran (   k
                                              e.  ( 0 ... N )
                                              |-> ( n e. ( 1 ... N ) |-> C ) )
                                        \ { &S12 } ) ) ) )
221:220:biimpar    |- (  (  ph
                         /\ A. &S12
                            e. ran (   k
                                   e.  ( 0 ... N )
                                   |-> ( n e. ( 1 ... N ) |-> C ) )
                               -.    &S12
                                  e. ( ( LSpan
                                       ` ( ( CCfld |`s QQ )
                                           freeLMod
                                           ( 1 ... N ) ) )
                                     ` ( ran (   k
                                             e.  ( 0 ... N )
                                             |-> ( n e. ( 1 ... N ) |-> C ) )
                                       \ { &S12 } ) ) )
                      ->    ran (   k
                                e.  ( 0 ... N )
                                |-> ( n e. ( 1 ... N ) |-> C ) )
                         e. ( mrInd
                            ` ( LSubSp
                              ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ) )
222:218,221:sylan2 |- (  (  ph
                         /\    ran (   k
                                   e.  ( 0 ... N )
                                   |-> ( n e. ( 1 ... N ) |-> C ) )
                            e. ( LIndS
                               ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) )
                      ->    ran (   k
                                e.  ( 0 ... N )
                                |-> ( n e. ( 1 ... N ) |-> C ) )
                         e. ( mrInd
                            ` ( LSubSp
                              ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ) )
223:214,222:syl5eqel 
                   |- (  (  ph
                         /\    ran (   k
                                   e.  ( 0 ... N )
                                   |-> ( n e. ( 1 ... N ) |-> C ) )
                            e. ( LIndS
                               ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) )
                      ->    (  ran (   k
                                   e.  ( 0 ... N )
                                   |-> ( n e. ( 1 ... N ) |-> C ) )
                            u. (/) )
                         e. ( mrInd
                            ` ( LSubSp
                              ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) ) )
224::mptfi         |- (  ( 0 ... N ) e. Fin
                      ->    ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) )
                         e. Fin )
225::rnfi          |- (     ( k e. ( 0 ... N ) |-> ( n e. ( 1 ... N ) |-> C ) )
                         e. Fin
                      ->    ran (   k
                                e.  ( 0 ... N )
                                |-> ( n e. ( 1 ... N ) |-> C ) )
                         e. Fin )
226:28,224,225:mp2b 
                   |-    ran (   k
                             e.  ( 0 ... N )
                             |-> ( n e. ( 1 ... N ) |-> C ) )
                      e. Fin
227:226:orci       |- (     ran (   k
                                e.  ( 0 ... N )
                                |-> ( n e. ( 1 ... N ) |-> C ) )
                         e. Fin
                      \/    ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) )
                         e. Fin )
228:227:a1i        |- (  (  ph
                         /\    ran (   k
                                   e.  ( 0 ... N )
                                   |-> ( n e. ( 1 ... N ) |-> C ) )
                            e. ( LIndS
                               ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) )
                      -> (     ran (   k
                                   e.  ( 0 ... N )
                                   |-> ( n e. ( 1 ... N ) |-> C ) )
                            e. Fin
                         \/    ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) )
                            e. Fin ) )
229:180,184,185,191,196,203,213,223,228:mreexexd 
                   |- (  (  ph
                         /\    ran (   k
                                   e.  ( 0 ... N )
                                   |-> ( n e. ( 1 ... N ) |-> C ) )
                            e. ( LIndS
                               ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) ) )
                      -> E. &S11
                         e. ~P ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) )
                            (  ran (   k
                                   e.  ( 0 ... N )
                                   |-> ( n e. ( 1 ... N ) |-> C ) )
                               ~~
                               &S11
                            /\    ( &S11 u. (/) )
                               e. ( mrInd
                                  ` ( LSubSp
                                    ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) )
                                    ) ) ) )
230:229:ex         |- (  ph
                      -> (     ran (   k
                                   e.  ( 0 ... N )
                                   |-> ( n e. ( 1 ... N ) |-> C ) )
                            e. ( LIndS
                               ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) )
                         -> E. &S11
                            e. ~P ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) )
                               (  ran (   k
                                      e.  ( 0 ... N )
                                      |-> ( n e. ( 1 ... N ) |-> C ) )
                                  ~~
                                  &S11
                               /\    ( &S11 u. (/) )
                                  e. ( mrInd
                                     ` ( LSubSp
                                       ` ( ( CCfld |`s QQ )
                                           freeLMod
                                           ( 1 ... N ) ) ) ) ) ) )
231::ovex          |- ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) e. _V
232:231:rnex       |-    ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) )
                      e. _V
233::elpwi         |- (     &S11
                         e. ~P ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) )
                      ->    &S11
                         C_ ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) )
234::ssdomg        |- (     ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) )
                         e. _V
                      -> (     &S11
                            C_ ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) )
                         -> &S11
                            ~<_
                            ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) ) )
235:232,233,234:mpsyl 
                   |- (     &S11
                         e. ~P ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) )
                      -> &S11
                         ~<_
                         ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) )
236::endomtr       |- (  (  ran (   k
                                e.  ( 0 ... N )
                                |-> ( n e. ( 1 ... N ) |-> C ) )
                            ~~
                            &S11
                         /\ &S11
                            ~<_
                            ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) )
                      -> ran (   k
                             e.  ( 0 ... N )
                             |-> ( n e. ( 1 ... N ) |-> C ) )
                         ~<_
                         ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) )
237:236:ancoms     |- (  (  &S11
                            ~<_
                            ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) )
                         /\ ran (   k
                                e.  ( 0 ... N )
                                |-> ( n e. ( 1 ... N ) |-> C ) )
                            ~~
                            &S11 )
                      -> ran (   k
                             e.  ( 0 ... N )
                             |-> ( n e. ( 1 ... N ) |-> C ) )
                         ~<_
                         ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) )
238::f1f1orn       |- (         (   k
                                e.  ( 0 ... N )
                                |-> ( n e. ( 1 ... N ) |-> C ) )
                         :      ( 0 ... N )
                         -1-1-> &C49
                      ->             (   k
                                     e.  ( 0 ... N )
                                     |-> ( n e. ( 1 ... N ) |-> C ) )
                         :           ( 0 ... N )
                         -1-1-onto-> ran (   k
                                         e.  ( 0 ... N )
                                         |-> ( n e. ( 1 ... N ) |-> C ) ) )
239::ovex          |- ( 0 ... N ) e. _V
240:239:f1oen      |- (              (   k
                                     e.  ( 0 ... N )
                                     |-> ( n e. ( 1 ... N ) |-> C ) )
                         :           ( 0 ... N )
                         -1-1-onto-> ran (   k
                                         e.  ( 0 ... N )
                                         |-> ( n e. ( 1 ... N ) |-> C ) )
                      -> ( 0 ... N )
                         ~~
                         ran (   k
                             e.  ( 0 ... N )
                             |-> ( n e. ( 1 ... N ) |-> C ) ) )
241:238,240:syl    |- (         (   k
                                e.  ( 0 ... N )
                                |-> ( n e. ( 1 ... N ) |-> C ) )
                         :      ( 0 ... N )
                         -1-1-> &C49
                      -> ( 0 ... N )
                         ~~
                         ran (   k
                             e.  ( 0 ... N )
                             |-> ( n e. ( 1 ... N ) |-> C ) ) )
242::endomtr       |- (  (  ( 0 ... N )
                            ~~
                            ran (   k
                                e.  ( 0 ... N )
                                |-> ( n e. ( 1 ... N ) |-> C ) )
                         /\ ran (   k
                                e.  ( 0 ... N )
                                |-> ( n e. ( 1 ... N ) |-> C ) )
                            ~<_
                            ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) )
                      -> ( 0 ... N )
                         ~<_
                         ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) )
243:197:uvcendim   |- (  ( ( CCfld |`s QQ ) e. NzRing /\ ( 1 ... N ) e. Fin )
                      -> ( 1 ... N )
                         ~~
                         ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) )
244:158,24,243:mp2an 
                   |- ( 1 ... N )
                      ~~
                      ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) )
245:244:ensymi     |- ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) )
                      ~~
                      ( 1 ... N )
246::domentr       |- (  (  ( 0 ... N )
                            ~<_
                            ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) )
                         /\ ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) )
                            ~~
                            ( 1 ... N ) )
                      -> ( 0 ... N ) ~<_ ( 1 ... N ) )
247::hashdom       |- (  ( ( 0 ... N ) e. Fin /\ ( 1 ... N ) e. Fin )
                      -> (   ( # ` ( 0 ... N ) ) <_ ( # ` ( 1 ... N ) )
                         <-> ( 0 ... N ) ~<_ ( 1 ... N ) ) )
248:28,24,247:mp2an 
                   |- (   ( # ` ( 0 ... N ) ) <_ ( # ` ( 1 ... N ) )
                      <-> ( 0 ... N ) ~<_ ( 1 ... N ) )
249::hashfz0       |- (  N e. NN0
                      -> ( # ` ( 0 ... N ) ) = ( N + 1 ) )
250:h2,249:syl     |- (  ph
                      -> ( # ` ( 0 ... N ) ) = ( N + 1 ) )
251::hashfz1       |- (  N e. NN0
                      -> ( # ` ( 1 ... N ) ) = N )
252:h2,251:syl     |- (  ph
                      -> ( # ` ( 1 ... N ) ) = N )
253:250,252:breq12d 
                   |- (  ph
                      -> (   ( # ` ( 0 ... N ) ) <_ ( # ` ( 1 ... N ) )
                         <-> ( N + 1 ) <_ N ) )
254:248,253:syl5bbr 
                   |- (  ph
                      -> ( ( 0 ... N ) ~<_ ( 1 ... N ) <-> ( N + 1 ) <_ N ) )
255:246,254:syl5ib |- (  ph
                      -> (  (  ( 0 ... N )
                               ~<_
                               ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) )
                            /\ ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) )
                               ~~
                               ( 1 ... N ) )
                         -> ( N + 1 ) <_ N ) )
256:245,255:mpan2i |- (  ph
                      -> (  ( 0 ... N )
                            ~<_
                            ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) )
                         -> ( N + 1 ) <_ N ) )
257:242,256:syl5   |- (  ph
                      -> (  (  ( 0 ... N )
                               ~~
                               ran (   k
                                   e.  ( 0 ... N )
                                   |-> ( n e. ( 1 ... N ) |-> C ) )
                            /\ ran (   k
                                   e.  ( 0 ... N )
                                   |-> ( n e. ( 1 ... N ) |-> C ) )
                               ~<_
                               ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) )
                         -> ( N + 1 ) <_ N ) )
258:257:expd       |- (  ph
                      -> (  ( 0 ... N )
                            ~~
                            ran (   k
                                e.  ( 0 ... N )
                                |-> ( n e. ( 1 ... N ) |-> C ) )
                         -> (  ran (   k
                                   e.  ( 0 ... N )
                                   |-> ( n e. ( 1 ... N ) |-> C ) )
                               ~<_
                               ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) )
                            -> ( N + 1 ) <_ N ) ) )
259:241,258:syl5   |- (  ph
                      -> (         (   k
                                   e.  ( 0 ... N )
                                   |-> ( n e. ( 1 ... N ) |-> C ) )
                            :      ( 0 ... N )
                            -1-1-> &C49
                         -> (  ran (   k
                                   e.  ( 0 ... N )
                                   |-> ( n e. ( 1 ... N ) |-> C ) )
                               ~<_
                               ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) )
                            -> ( N + 1 ) <_ N ) ) )
260:259:com23      |- (  ph
                      -> (  ran (   k
                                e.  ( 0 ... N )
                                |-> ( n e. ( 1 ... N ) |-> C ) )
                            ~<_
                            ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) )
                         -> (         (   k
                                      e.  ( 0 ... N )
                                      |-> ( n e. ( 1 ... N ) |-> C ) )
                               :      ( 0 ... N )
                               -1-1-> &C49
                            -> ( N + 1 ) <_ N ) ) )
261:237,260:syl5   |- (  ph
                      -> (  (  &S11
                               ~<_
                               ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) )
                            /\ ran (   k
                                   e.  ( 0 ... N )
                                   |-> ( n e. ( 1 ... N ) |-> C ) )
                               ~~
                               &S11 )
                         -> (         (   k
                                      e.  ( 0 ... N )
                                      |-> ( n e. ( 1 ... N ) |-> C ) )
                               :      ( 0 ... N )
                               -1-1-> &C49
                            -> ( N + 1 ) <_ N ) ) )
262:261:expdimp    |- (  (  ph
                         /\ &S11
                            ~<_
                            ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) ) )
                      -> (  ran (   k
                                e.  ( 0 ... N )
                                |-> ( n e. ( 1 ... N ) |-> C ) )
                            ~~
                            &S11
                         -> (         (   k
                                      e.  ( 0 ... N )
                                      |-> ( n e. ( 1 ... N ) |-> C ) )
                               :      ( 0 ... N )
                               -1-1-> &C49
                            -> ( N + 1 ) <_ N ) ) )
263:235,262:sylan2 |- (  (  ph
                         /\    &S11
                            e. ~P ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) )
                         )
                      -> (  ran (   k
                                e.  ( 0 ... N )
                                |-> ( n e. ( 1 ... N ) |-> C ) )
                            ~~
                            &S11
                         -> (         (   k
                                      e.  ( 0 ... N )
                                      |-> ( n e. ( 1 ... N ) |-> C ) )
                               :      ( 0 ... N )
                               -1-1-> &C49
                            -> ( N + 1 ) <_ N ) ) )
264:263:adantrd    |- (  (  ph
                         /\    &S11
                            e. ~P ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) )
                         )
                      -> (  (  ran (   k
                                   e.  ( 0 ... N )
                                   |-> ( n e. ( 1 ... N ) |-> C ) )
                               ~~
                               &S11
                            /\    ( &S11 u. (/) )
                               e. ( mrInd
                                  ` ( LSubSp
                                    ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) )
                                    ) ) )
                         -> (         (   k
                                      e.  ( 0 ... N )
                                      |-> ( n e. ( 1 ... N ) |-> C ) )
                               :      ( 0 ... N )
                               -1-1-> &C49
                            -> ( N + 1 ) <_ N ) ) )
265:264:rexlimdva  |- (  ph
                      -> (  E. &S11
                            e. ~P ran ( ( CCfld |`s QQ ) unitVec ( 1 ... N ) )
                               (  ran (   k
                                      e.  ( 0 ... N )
                                      |-> ( n e. ( 1 ... N ) |-> C ) )
                                  ~~
                                  &S11
                               /\    ( &S11 u. (/) )
                                  e. ( mrInd
                                     ` ( LSubSp
                                       ` ( ( CCfld |`s QQ )
                                           freeLMod
                                           ( 1 ... N ) ) ) ) )
                         -> (         (   k
                                      e.  ( 0 ... N )
                                      |-> ( n e. ( 1 ... N ) |-> C ) )
                               :      ( 0 ... N )
                               -1-1-> &C49
                            -> ( N + 1 ) <_ N ) ) )
266:230,265:syld   |- (  ph
                      -> (     ran (   k
                                   e.  ( 0 ... N )
                                   |-> ( n e. ( 1 ... N ) |-> C ) )
                            e. ( LIndS
                               ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) )
                         -> (         (   k
                                      e.  ( 0 ... N )
                                      |-> ( n e. ( 1 ... N ) |-> C ) )
                               :      ( 0 ... N )
                               -1-1-> &C49
                            -> ( N + 1 ) <_ N ) ) )
267:266:impd       |- (  ph
                      -> (  (     ran (   k
                                      e.  ( 0 ... N )
                                      |-> ( n e. ( 1 ... N ) |-> C ) )
                               e. ( LIndS
                                  ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) )
                            /\        (   k
                                      e.  ( 0 ... N )
                                      |-> ( n e. ( 1 ... N ) |-> C ) )
                               :      ( 0 ... N )
                               -1-1-> &C49 )
                         -> ( N + 1 ) <_ N ) )
268:267:ancomsd    |- (  ph
                      -> (  (         (   k
                                      e.  ( 0 ... N )
                                      |-> ( n e. ( 1 ... N ) |-> C ) )
                               :      ( 0 ... N )
                               -1-1-> &C49
                            /\    ran (   k
                                      e.  ( 0 ... N )
                                      |-> ( n e. ( 1 ... N ) |-> C ) )
                               e. ( LIndS
                                  ` ( ( CCfld |`s QQ ) freeLMod ( 1 ... N ) ) )
                            )
                         -> ( N + 1 ) <_ N ) )
269:176,268:sylbird
270:9,269:mt3d
271::eldifsn       |- (      &C37
                          e. ( ( QQ ^m ( 0 ... N ) )
                             \ { ( ( 0 ... N ) X. { 0 } ) } )
                      <-> (  &C37 e. ( QQ ^m ( 0 ... N ) )
                          /\ &C37 =/= ( ( 0 ... N ) X. { 0 } ) ) )
272:44:anim1i      |- (  (  &C37 e. ( QQ ^m ( 0 ... N ) )
                         /\ &C37 =/= ( ( 0 ... N ) X. { 0 } ) )
                      -> (  &C37 : ( 0 ... N ) --> QQ
                         /\ &C37 =/= ( ( 0 ... N ) X. { 0 } ) ) )
273:271,272:sylbi  |- (     &C37
                         e. ( ( QQ ^m ( 0 ... N ) )
                            \ { ( ( 0 ... N ) X. { 0 } ) } )
                      -> (  &C37 : ( 0 ... N ) --> QQ
                         /\ &C37 =/= ( ( 0 ... N ) X. { 0 } ) ) )
274:91:a1i         |- (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                      -> QQ C_ CC )
275:h2:adantr      |- (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                      -> N e. NN0 )
276:274,275,56:elplyd 
                   |- (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                      ->    (   &S21
                            e.  CC
                            |-> sum_ k
                                e.   ( 0 ... N )
                                     ( ( &C37 ` k ) x. ( &S21 ^ k ) ) )
                         e. ( Poly ` QQ ) )
277:276:adantrr    |- (  (  ph
                         /\ (  &C37 : ( 0 ... N ) --> QQ
                            /\ &C37 =/= ( ( 0 ... N ) X. { 0 } ) ) )
                      ->    (   &S21
                            e.  CC
                            |-> sum_ k
                                e.   ( 0 ... N )
                                     ( ( &C37 ` k ) x. ( &S21 ^ k ) ) )
                         e. ( Poly ` QQ ) )
278::uzdisj        |-   (   ( 0 ... ( ( N + 1 ) - 1 ) )
                        i^i ( ZZ>= ` ( N + 1 ) ) )
                      = (/)
279:h2:nn0cnd      |- ( ph -> N e. CC )
280::pncan1        |- (  N e. CC
                      -> ( ( N + 1 ) - 1 ) = N )
281:279,280:syl    |- (  ph
                      -> ( ( N + 1 ) - 1 ) = N )
282:281:oveq2d     |- (  ph
                      ->   ( 0 ... ( ( N + 1 ) - 1 ) )
                         = ( 0 ... N ) )
283:282:ineq1d     |- (  ph
                      ->   (   ( 0 ... ( ( N + 1 ) - 1 ) )
                           i^i ( ZZ>= ` ( N + 1 ) ) )
                         = ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) )
284:278,283:syl5eqr 
                   |- (  ph
                      ->   (/)
                         = ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) )
285:284:eqcomd     |- (  ph
                      ->   ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) )
                         = (/) )
286:128:fconst     |-     ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } )
                      :   ( ZZ>= ` ( N + 1 ) )
                      --> { 0 }
287::snssi         |- ( 0 e. QQ -> { 0 } C_ QQ )
288:95,96,287:mp2b |- { 0 } C_ QQ
289:288,91:sstri   |- { 0 } C_ CC
290::fss           |- (  (      ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } )
                            :   ( ZZ>= ` ( N + 1 ) )
                            --> { 0 }
                         /\ { 0 } C_ CC )
                      ->     ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } )
                         :   ( ZZ>= ` ( N + 1 ) )
                         --> CC )
291:286,289,290:mp2an 
                   |-     ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } )
                      :   ( ZZ>= ` ( N + 1 ) )
                      --> CC
292::fun           |- (  (  (  &C37 : ( 0 ... N ) --> QQ
                            /\     ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } )
                               :   ( ZZ>= ` ( N + 1 ) )
                               --> CC )
                         /\   ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) )
                            = (/) )
                      ->     (  &C37
                             u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) )
                         :   ( ( 0 ... N ) u. ( ZZ>= ` ( N + 1 ) ) )
                         --> ( QQ u. CC ) )
293:291,292:mpanl2 |- (  (  &C37 : ( 0 ... N ) --> QQ
                         /\   ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) )
                            = (/) )
                      ->     (  &C37
                             u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) )
                         :   ( ( 0 ... N ) u. ( ZZ>= ` ( N + 1 ) ) )
                         --> ( QQ u. CC ) )
294:285,293:sylan2 |- (  ( &C37 : ( 0 ... N ) --> QQ /\ ph )
                      ->     (  &C37
                             u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) )
                         :   ( ( 0 ... N ) u. ( ZZ>= ` ( N + 1 ) ) )
                         --> ( QQ u. CC ) )
295:294:ancoms     |- (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                      ->     (  &C37
                             u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) )
                         :   ( ( 0 ... N ) u. ( ZZ>= ` ( N + 1 ) ) )
                         --> ( QQ u. CC ) )
296::nn0uz         |- NN0 = ( ZZ>= ` 0 )
297:6,296:syl6eleq |- ( ph -> ( N + 1 ) e. ( ZZ>= ` 0 ) )
298::uzsplit       |- (  ( N + 1 ) e. ( ZZ>= ` 0 )
                      ->   ( ZZ>= ` 0 )
                         = (  ( 0 ... ( ( N + 1 ) - 1 ) )
                           u. ( ZZ>= ` ( N + 1 ) ) ) )
299:297,298:syl    |- (  ph
                      ->   ( ZZ>= ` 0 )
                         = (  ( 0 ... ( ( N + 1 ) - 1 ) )
                           u. ( ZZ>= ` ( N + 1 ) ) ) )
300:296,299:syl5eq |- (  ph
                      ->   NN0
                         = (  ( 0 ... ( ( N + 1 ) - 1 ) )
                           u. ( ZZ>= ` ( N + 1 ) ) ) )
301:282:uneq1d     |- (  ph
                      ->   (  ( 0 ... ( ( N + 1 ) - 1 ) )
                           u. ( ZZ>= ` ( N + 1 ) ) )
                         = ( ( 0 ... N ) u. ( ZZ>= ` ( N + 1 ) ) ) )
302:300,301:eqtr2d |- (  ph
                      ->   ( ( 0 ... N ) u. ( ZZ>= ` ( N + 1 ) ) )
                         = NN0 )
303::ssequn1       |- ( QQ C_ CC <-> ( QQ u. CC ) = CC )
304:91,303:mpbi    |- ( QQ u. CC ) = CC
305:304:a1i        |- ( ph -> ( QQ u. CC ) = CC )
306:302,305:feq23d |- (  ph
                      -> (       (  &C37
                                 u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) )
                             :   ( ( 0 ... N ) u. ( ZZ>= ` ( N + 1 ) ) )
                             --> ( QQ u. CC )
                         <->     (  &C37
                                 u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) )
                             :   NN0
                             --> CC ) )
307:306:adantr     |- (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                      -> (       (  &C37
                                 u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) )
                             :   ( ( 0 ... N ) u. ( ZZ>= ` ( N + 1 ) ) )
                             --> ( QQ u. CC )
                         <->     (  &C37
                                 u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) )
                             :   NN0
                             --> CC ) )
308:295,307:mpbid  |- (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                      ->     (  &C37
                             u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) )
                         :   NN0
                         --> CC )
309::ffn           |- ( &C37 : ( 0 ... N ) --> QQ -> &C37 Fn ( 0 ... N ) )
310::fnimadisj     |- (  (  &C37 Fn ( 0 ... N )
                         /\   ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) )
                            = (/) )
                      ->   ( &C37 " ( ZZ>= ` ( N + 1 ) ) )
                         = (/) )
311:309,285,310:syl2anr 
                   |- (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                      ->   ( &C37 " ( ZZ>= ` ( N + 1 ) ) )
                         = (/) )
312:h2:nn0zd       |- ( ph -> N e. ZZ )
313:312:peano2zd   |- ( ph -> ( N + 1 ) e. ZZ )
314::uzid          |- (  ( N + 1 ) e. ZZ
                      -> ( N + 1 ) e. ( ZZ>= ` ( N + 1 ) ) )
315::ne0i          |- (  ( N + 1 ) e. ( ZZ>= ` ( N + 1 ) )
                      -> ( ZZ>= ` ( N + 1 ) ) =/= (/) )
316:313,314,315:3syl 
                   |- (  ph
                      -> ( ZZ>= ` ( N + 1 ) ) =/= (/) )
317::inidm         |-   ( ( ZZ>= ` ( N + 1 ) ) i^i ( ZZ>= ` ( N + 1 ) ) )
                      = ( ZZ>= ` ( N + 1 ) )
318:317:neeq1i     |- (       ( ( ZZ>= ` ( N + 1 ) ) i^i ( ZZ>= ` ( N + 1 ) ) )
                          =/= (/)
                      <-> ( ZZ>= ` ( N + 1 ) ) =/= (/) )
319:316,318:sylibr |- (  ph
                      ->     ( ( ZZ>= ` ( N + 1 ) ) i^i ( ZZ>= ` ( N + 1 ) ) )
                         =/= (/) )
320::xpima2        |- (      ( ( ZZ>= ` ( N + 1 ) ) i^i ( ZZ>= ` ( N + 1 ) ) )
                         =/= (/)
                      ->   ( ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } )
                           " ( ZZ>= ` ( N + 1 ) ) )
                         = { 0 } )
321:319,320:syl    |- (  ph
                      ->   ( ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } )
                           " ( ZZ>= ` ( N + 1 ) ) )
                         = { 0 } )
322:321:adantr     |- (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                      ->   ( ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } )
                           " ( ZZ>= ` ( N + 1 ) ) )
                         = { 0 } )
323:311,322:uneq12d 
                   |- (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                      ->   (  ( &C37 " ( ZZ>= ` ( N + 1 ) ) )
                           u. ( ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } )
                              " ( ZZ>= ` ( N + 1 ) ) ) )
                         = ( (/) u. { 0 } ) )
324::imaundir      |-   ( (  &C37
                          u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) )
                        " ( ZZ>= ` ( N + 1 ) ) )
                      = (  ( &C37 " ( ZZ>= ` ( N + 1 ) ) )
                        u. ( ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } )
                           " ( ZZ>= ` ( N + 1 ) ) ) )
325::uncom         |- ( (/) u. { 0 } ) = ( { 0 } u. (/) )
326::un0           |- ( { 0 } u. (/) ) = { 0 }
327:325,326:eqtr2i |- { 0 } = ( (/) u. { 0 } )
328:323,324,327:3eqtr4g 
                   |- (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                      ->   ( (  &C37
                             u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) )
                           " ( ZZ>= ` ( N + 1 ) ) )
                         = { 0 } )
329:285,309:anim12ci 
                   |- (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                      -> (  &C37 Fn ( 0 ... N )
                         /\   ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) )
                            = (/) ) )
330::fnconstg      |- (  0 e. _V
                      ->    ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } )
                         Fn ( ZZ>= ` ( N + 1 ) ) )
331:128,330:ax-mp  |-    ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } )
                      Fn ( ZZ>= ` ( N + 1 ) )
332::fvun1         |- (  (  &C37 Fn ( 0 ... N )
                         /\    ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } )
                            Fn ( ZZ>= ` ( N + 1 ) )
                         /\ (    ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) )
                               = (/)
                            /\ k e. ( 0 ... N ) ) )
                      ->   ( (  &C37
                             u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) )
                           ` k )
                         = ( &C37 ` k ) )
333:331,332:mp3an2 |- (  (  &C37 Fn ( 0 ... N )
                         /\ (    ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) )
                               = (/)
                            /\ k e. ( 0 ... N ) ) )
                      ->   ( (  &C37
                             u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) )
                           ` k )
                         = ( &C37 ` k ) )
334:333:anassrs    |- (  (  (  &C37 Fn ( 0 ... N )
                            /\   ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) )
                               = (/) )
                         /\ k e. ( 0 ... N ) )
                      ->   ( (  &C37
                             u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) )
                           ` k )
                         = ( &C37 ` k ) )
335:329,334:sylan  |- (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                         /\ k e. ( 0 ... N ) )
                      ->   ( (  &C37
                             u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) )
                           ` k )
                         = ( &C37 ` k ) )
336:335:eqcomd     |- (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                         /\ k e. ( 0 ... N ) )
                      ->   ( &C37 ` k )
                         = ( (  &C37
                             u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) )
                           ` k ) )
337:336:oveq1d     |- (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                         /\ k e. ( 0 ... N ) )
                      ->   ( ( &C37 ` k ) x. ( &S21 ^ k ) )
                         = ( ( (  &C37
                               u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) )
                             ` k )
                             x.
                             ( &S21 ^ k ) ) )
338:337:sumeq2dv   |- (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                      ->   sum_ k
                           e.   ( 0 ... N )
                                ( ( &C37 ` k ) x. ( &S21 ^ k ) )
                         = sum_ k
                           e.   ( 0 ... N )
                                ( ( (  &C37
                                    u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) )
                                  ` k )
                                  x.
                                  ( &S21 ^ k ) ) )
339:338:mpteq2dv   |- (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                      ->   (   &S21
                           e.  CC
                           |-> sum_ k
                               e.   ( 0 ... N )
                                    ( ( &C37 ` k ) x. ( &S21 ^ k ) ) )
                         = (   &S21
                           e.  CC
                           |-> sum_ k
                               e.   ( 0 ... N )
                                    ( ( (  &C37
                                        u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) )
                                      ` k )
                                      x.
                                      ( &S21 ^ k ) ) ) )
340:276,275,308,328,339:coeeq 
                   |- (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                      ->   ( coeff
                           ` (   &S21
                             e.  CC
                             |-> sum_ k
                                 e.   ( 0 ... N )
                                      ( ( &C37 ` k ) x. ( &S21 ^ k ) ) ) )
                         = (  &C37
                           u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) ) )
341:340:reseq1d    |- (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                      ->   (  ( coeff
                              ` (   &S21
                                e.  CC
                                |-> sum_ k
                                    e.   ( 0 ... N )
                                         ( ( &C37 ` k ) x. ( &S21 ^ k ) ) ) )
                           |` ( 0 ... N ) )
                         = (  (  &C37
                              u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) )
                           |` ( 0 ... N ) ) )
342::res0          |- ( &C37 |` (/) ) = (/)
343:284:reseq2d    |- (  ph
                      ->   ( &C37 |` (/) )
                         = (  &C37
                           |` ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) ) )
344::res0          |-   (  ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } )
                        |` (/) )
                      = (/)
345:284:reseq2d    |- (  ph
                      ->   (  ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } )
                           |` (/) )
                         = (  ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } )
                           |` ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) ) )
346:344,345:syl5eqr 
                   |- (  ph
                      ->   (/)
                         = (  ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } )
                           |` ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) ) )
347:342,343,346:3eqtr3a 
                   |- (  ph
                      ->   (  &C37
                           |` ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) )
                         = (  ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } )
                           |` ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) ) )
348::fss           |- (  (      ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } )
                            :   ( ZZ>= ` ( N + 1 ) )
                            --> { 0 }
                         /\ { 0 } C_ QQ )
                      ->     ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } )
                         :   ( ZZ>= ` ( N + 1 ) )
                         --> QQ )
349:286,288,348:mp2an 
                   |-     ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } )
                      :   ( ZZ>= ` ( N + 1 ) )
                      --> QQ
350::fresaunres1   |- (  (  &C37 : ( 0 ... N ) --> QQ
                         /\     ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } )
                            :   ( ZZ>= ` ( N + 1 ) )
                            --> QQ
                         /\   (  &C37
                              |` ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) )
                            = (  ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } )
                              |` ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) ) )
                      ->   (  (  &C37
                              u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) )
                           |` ( 0 ... N ) )
                         = &C37 )
351:349,350:mp3an2 |- (  (  &C37 : ( 0 ... N ) --> QQ
                         /\   (  &C37
                              |` ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) )
                            = (  ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } )
                              |` ( ( 0 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) ) )
                      ->   (  (  &C37
                              u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) )
                           |` ( 0 ... N ) )
                         = &C37 )
352:347,351:sylan2 |- (  ( &C37 : ( 0 ... N ) --> QQ /\ ph )
                      ->   (  (  &C37
                              u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) )
                           |` ( 0 ... N ) )
                         = &C37 )
353:352:ancoms     |- (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                      ->   (  (  &C37
                              u. ( ( ZZ>= ` ( N + 1 ) ) X. { 0 } ) )
                           |` ( 0 ... N ) )
                         = &C37 )
354:341,353:eqtrd  |- (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                      ->   (  ( coeff
                              ` (   &S21
                                e.  CC
                                |-> sum_ k
                                    e.   ( 0 ... N )
                                         ( ( &C37 ` k ) x. ( &S21 ^ k ) ) ) )
                           |` ( 0 ... N ) )
                         = &C37 )
355::fveq2         |- (    (   &S21
                           e.  CC
                           |-> sum_ k
                               e.   ( 0 ... N )
                                    ( ( &C37 ` k ) x. ( &S21 ^ k ) ) )
                         = 0p
                      ->   ( coeff
                           ` (   &S21
                             e.  CC
                             |-> sum_ k
                                 e.   ( 0 ... N )
                                      ( ( &C37 ` k ) x. ( &S21 ^ k ) ) ) )
                         = ( coeff ` 0p ) )
356:355:reseq1d    |- (    (   &S21
                           e.  CC
                           |-> sum_ k
                               e.   ( 0 ... N )
                                    ( ( &C37 ` k ) x. ( &S21 ^ k ) ) )
                         = 0p
                      ->   (  ( coeff
                              ` (   &S21
                                e.  CC
                                |-> sum_ k
                                    e.   ( 0 ... N )
                                         ( ( &C37 ` k ) x. ( &S21 ^ k ) ) ) )
                           |` ( 0 ... N ) )
                         = ( ( coeff ` 0p ) |` ( 0 ... N ) ) )
357::eqtr2         |- (  (    (  ( coeff
                                 ` (   &S21
                                   e.  CC
                                   |-> sum_ k
                                       e.   ( 0 ... N )
                                            ( ( &C37 ` k ) x. ( &S21 ^ k ) ) )
                                 )
                              |` ( 0 ... N ) )
                            = &C37
                         /\   (  ( coeff
                                 ` (   &S21
                                   e.  CC
                                   |-> sum_ k
                                       e.   ( 0 ... N )
                                            ( ( &C37 ` k ) x. ( &S21 ^ k ) ) )
                                 )
                              |` ( 0 ... N ) )
                            = ( ( coeff ` 0p ) |` ( 0 ... N ) ) )
                      -> &C37 = ( ( coeff ` 0p ) |` ( 0 ... N ) ) )
358::coe0          |- ( coeff ` 0p ) = ( NN0 X. { 0 } )
359:358:reseq1i    |-   ( ( coeff ` 0p ) |` ( 0 ... N ) )
                      = ( ( NN0 X. { 0 } ) |` ( 0 ... N ) )
360::elfznn0       |- ( &S17 e. ( 0 ... N ) -> &S17 e. NN0 )
361:360:ssriv      |- ( 0 ... N ) C_ NN0
362::xpssres       |- (  ( 0 ... N ) C_ NN0
                      ->   ( ( NN0 X. { 0 } ) |` ( 0 ... N ) )
                         = ( ( 0 ... N ) X. { 0 } ) )
363:361,362:ax-mp  |-   ( ( NN0 X. { 0 } ) |` ( 0 ... N ) )
                      = ( ( 0 ... N ) X. { 0 } )
364:359,363:eqtri  |-   ( ( coeff ` 0p ) |` ( 0 ... N ) )
                      = ( ( 0 ... N ) X. { 0 } )
365:357,364:syl6eq |- (  (    (  ( coeff
                                 ` (   &S21
                                   e.  CC
                                   |-> sum_ k
                                       e.   ( 0 ... N )
                                            ( ( &C37 ` k ) x. ( &S21 ^ k ) ) )
                                 )
                              |` ( 0 ... N ) )
                            = &C37
                         /\   (  ( coeff
                                 ` (   &S21
                                   e.  CC
                                   |-> sum_ k
                                       e.   ( 0 ... N )
                                            ( ( &C37 ` k ) x. ( &S21 ^ k ) ) )
                                 )
                              |` ( 0 ... N ) )
                            = ( ( coeff ` 0p ) |` ( 0 ... N ) ) )
                      -> &C37 = ( ( 0 ... N ) X. { 0 } ) )
366:365:ex         |- (    (  ( coeff
                              ` (   &S21
                                e.  CC
                                |-> sum_ k
                                    e.   ( 0 ... N )
                                         ( ( &C37 ` k ) x. ( &S21 ^ k ) ) ) )
                           |` ( 0 ... N ) )
                         = &C37
                      -> (    (  ( coeff
                                 ` (   &S21
                                   e.  CC
                                   |-> sum_ k
                                       e.   ( 0 ... N )
                                            ( ( &C37 ` k ) x. ( &S21 ^ k ) ) )
                                 )
                              |` ( 0 ... N ) )
                            = ( ( coeff ` 0p ) |` ( 0 ... N ) )
                         -> &C37 = ( ( 0 ... N ) X. { 0 } ) ) )
367:354,356,366:syl2im 
                   |- (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                      -> (    (   &S21
                              e.  CC
                              |-> sum_ k
                                  e.   ( 0 ... N )
                                       ( ( &C37 ` k ) x. ( &S21 ^ k ) ) )
                            = 0p
                         -> &C37 = ( ( 0 ... N ) X. { 0 } ) ) )
368:367:necon3d    |- (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                      -> (  &C37 =/= ( ( 0 ... N ) X. { 0 } )
                         ->     (   &S21
                                e.  CC
                                |-> sum_ k
                                    e.   ( 0 ... N )
                                         ( ( &C37 ` k ) x. ( &S21 ^ k ) ) )
                            =/= 0p ) )
369:368:impr       |- (  (  ph
                         /\ (  &C37 : ( 0 ... N ) --> QQ
                            /\ &C37 =/= ( ( 0 ... N ) X. { 0 } ) ) )
                      ->     (   &S21
                             e.  CC
                             |-> sum_ k
                                 e.   ( 0 ... N )
                                      ( ( &C37 ` k ) x. ( &S21 ^ k ) ) )
                         =/= 0p )
370::eldifsn       |- (      (   &S21
                             e.  CC
                             |-> sum_ k
                                 e.   ( 0 ... N )
                                      ( ( &C37 ` k ) x. ( &S21 ^ k ) ) )
                          e. ( ( Poly ` QQ ) \ { 0p } )
                      <-> (     (   &S21
                                e.  CC
                                |-> sum_ k
                                    e.   ( 0 ... N )
                                         ( ( &C37 ` k ) x. ( &S21 ^ k ) ) )
                             e. ( Poly ` QQ )
                          /\     (   &S21
                                 e.  CC
                                 |-> sum_ k
                                     e.   ( 0 ... N )
                                          ( ( &C37 ` k ) x. ( &S21 ^ k ) ) )
                             =/= 0p ) )
371:277,369,370:sylanbrc 
                   |- (  (  ph
                         /\ (  &C37 : ( 0 ... N ) --> QQ
                            /\ &C37 =/= ( ( 0 ... N ) X. { 0 } ) ) )
                      ->    (   &S21
                            e.  CC
                            |-> sum_ k
                                e.   ( 0 ... N )
                                     ( ( &C37 ` k ) x. ( &S21 ^ k ) ) )
                         e. ( ( Poly ` QQ ) \ { 0p } ) )
372:371:adantrr    |- (  (  ph
                         /\ (  (  &C37 : ( 0 ... N ) --> QQ
                               /\ &C37 =/= ( ( 0 ... N ) X. { 0 } ) )
                            /\ A. n
                               e. ( 1 ... N )
                                    sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. C )
                                  = 0 ) )
                      ->    (   &S21
                            e.  CC
                            |-> sum_ k
                                e.   ( 0 ... N )
                                     ( ( &C37 ` k ) x. ( &S21 ^ k ) ) )
                         e. ( ( Poly ` QQ ) \ { 0p } ) )
373::oveq1         |- ( &S21 = A -> ( &S21 ^ k ) = ( A ^ k ) )
374:373:oveq2d     |- (  &S21 = A
                      ->   ( ( &C37 ` k ) x. ( &S21 ^ k ) )
                         = ( ( &C37 ` k ) x. ( A ^ k ) ) )
375:374:sumeq2sdv  |- (  &S21 = A
                      ->   sum_ k
                           e.   ( 0 ... N )
                                ( ( &C37 ` k ) x. ( &S21 ^ k ) )
                         = sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. ( A ^ k ) )
                      )
376::eqid          |-   (   &S21
                        e.  CC
                        |-> sum_ k
                            e.   ( 0 ... N )
                                 ( ( &C37 ` k ) x. ( &S21 ^ k ) ) )
                      = (   &S21
                        e.  CC
                        |-> sum_ k
                            e.   ( 0 ... N )
                                 ( ( &C37 ` k ) x. ( &S21 ^ k ) ) )
377::sumex         |-    sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. ( A ^ k ) )
                      e. _V
378:375,376,377:fvmpt 
                   |- (  A e. CC
                      ->   ( (   &S21
                             e.  CC
                             |-> sum_ k
                                 e.   ( 0 ... N )
                                      ( ( &C37 ` k ) x. ( &S21 ^ k ) ) )
                           ` A )
                         = sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. ( A ^ k ) )
                      )
379:h1,378:syl     |- (  ph
                      ->   ( (   &S21
                             e.  CC
                             |-> sum_ k
                                 e.   ( 0 ... N )
                                      ( ( &C37 ` k ) x. ( &S21 ^ k ) ) )
                           ` A )
                         = sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. ( A ^ k ) )
                      )
380:379:adantr     |- (  (  ph
                         /\ (  &C37 : ( 0 ... N ) --> QQ
                            /\ A. n
                               e. ( 1 ... N )
                                    sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. C )
                                  = 0 ) )
                      ->   ( (   &S21
                             e.  CC
                             |-> sum_ k
                                 e.   ( 0 ... N )
                                      ( ( &C37 ` k ) x. ( &S21 ^ k ) ) )
                           ` A )
                         = sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. ( A ^ k ) )
                      )
381:106:adantll    |- (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                         /\ k e. ( 0 ... N ) )
                      -> ( &C37 ` k ) e. CC )
383:h3:adantlr     |- (  (  ( ph /\ k e. ( 0 ... N ) )
                         /\ n e. ( 1 ... N ) )
                      -> X e. CC )
384:109,383:mulcld |- (  (  ( ph /\ k e. ( 0 ... N ) )
                         /\ n e. ( 1 ... N ) )
                      -> ( C x. X ) e. CC )
385:384:adantllr   |- (  (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                            /\ k e. ( 0 ... N ) )
                         /\ n e. ( 1 ... N ) )
                      -> ( C x. X ) e. CC )
386:54,381,385:fsummulc2 
                   |- (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                         /\ k e. ( 0 ... N ) )
                      ->   ( ( &C37 ` k ) x. sum_ n e. ( 1 ... N ) ( C x. X ) )
                         = sum_ n e. ( 1 ... N ) ( ( &C37 ` k ) x. ( C x. X ) )
                      )
388:h5:oveq2d      |- (  ( ph /\ k e. ( 0 ... N ) )
                      ->   ( ( &C37 ` k ) x. ( A ^ k ) )
                         = ( ( &C37 ` k ) x. sum_ n e. ( 1 ... N ) ( C x. X ) )
                      )
389:388:adantlr    |- (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                         /\ k e. ( 0 ... N ) )
                      ->   ( ( &C37 ` k ) x. ( A ^ k ) )
                         = ( ( &C37 ` k ) x. sum_ n e. ( 1 ... N ) ( C x. X ) )
                      )
390:381:adantr     |- (  (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                            /\ k e. ( 0 ... N ) )
                         /\ n e. ( 1 ... N ) )
                      -> ( &C37 ` k ) e. CC )
391:109:adantllr   |- (  (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                            /\ k e. ( 0 ... N ) )
                         /\ n e. ( 1 ... N ) )
                      -> C e. CC )
392::simpll        |- (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                         /\ k e. ( 0 ... N ) )
                      -> ph )
393:392,h3:sylan   |- (  (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                            /\ k e. ( 0 ... N ) )
                         /\ n e. ( 1 ... N ) )
                      -> X e. CC )
394:390,391,393:mulassd 
                   |- (  (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                            /\ k e. ( 0 ... N ) )
                         /\ n e. ( 1 ... N ) )
                      ->   ( ( ( &C37 ` k ) x. C ) x. X )
                         = ( ( &C37 ` k ) x. ( C x. X ) ) )
395:394:sumeq2dv   |- (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                         /\ k e. ( 0 ... N ) )
                      ->   sum_ n
                           e.   ( 1 ... N )
                                ( ( ( &C37 ` k ) x. C ) x. X )
                         = sum_ n e. ( 1 ... N ) ( ( &C37 ` k ) x. ( C x. X ) )
                      )
396:386,389,395:3eqtr4d 
                   |- (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                         /\ k e. ( 0 ... N ) )
                      ->   ( ( &C37 ` k ) x. ( A ^ k ) )
                         = sum_ n
                           e.   ( 1 ... N )
                                ( ( ( &C37 ` k ) x. C ) x. X ) )
397:396:sumeq2dv   |- (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                      ->   sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. ( A ^ k ) )
                         = sum_ k
                           e.   ( 0 ... N )
                                sum_ n
                                e.   ( 1 ... N )
                                     ( ( ( &C37 ` k ) x. C ) x. X ) )
398:106:ad2ant2lr  |- (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                         /\ ( k e. ( 0 ... N ) /\ n e. ( 1 ... N ) ) )
                      -> ( &C37 ` k ) e. CC )
399:109:anasss     |- (  (  ph
                         /\ ( k e. ( 0 ... N ) /\ n e. ( 1 ... N ) ) )
                      -> C e. CC )
400:399:adantlr    |- (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                         /\ ( k e. ( 0 ... N ) /\ n e. ( 1 ... N ) ) )
                      -> C e. CC )
401:398,400:mulcld |- (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                         /\ ( k e. ( 0 ... N ) /\ n e. ( 1 ... N ) ) )
                      -> ( ( &C37 ` k ) x. C ) e. CC )
402:h3:ad2ant2rl   |- (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                         /\ ( k e. ( 0 ... N ) /\ n e. ( 1 ... N ) ) )
                      -> X e. CC )
403:401,402:mulcld |- (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                         /\ ( k e. ( 0 ... N ) /\ n e. ( 1 ... N ) ) )
                      ->    ( ( ( &C37 ` k ) x. C ) x. X )
                         e. CC )
404:45,72,403:fsumcom 
                   |- (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                      ->   sum_ k
                           e.   ( 0 ... N )
                                sum_ n
                                e.   ( 1 ... N )
                                     ( ( ( &C37 ` k ) x. C ) x. X )
                         = sum_ n
                           e.   ( 1 ... N )
                                sum_ k
                                e.   ( 0 ... N )
                                     ( ( ( &C37 ` k ) x. C ) x. X ) )
405:397,404:eqtrd  |- (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                      ->   sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. ( A ^ k ) )
                         = sum_ n
                           e.   ( 1 ... N )
                                sum_ k
                                e.   ( 0 ... N )
                                     ( ( ( &C37 ` k ) x. C ) x. X ) )
406:405:adantrr    |- (  (  ph
                         /\ (  &C37 : ( 0 ... N ) --> QQ
                            /\ A. n
                               e. ( 1 ... N )
                                    sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. C )
                                  = 0 ) )
                      ->   sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. ( A ^ k ) )
                         = sum_ n
                           e.   ( 1 ... N )
                                sum_ k
                                e.   ( 0 ... N )
                                     ( ( ( &C37 ` k ) x. C ) x. X ) )
407::nfv           |- F/ n ph
408::nfv           |- F/ n &C37 : ( 0 ... N ) --> QQ
409::nfra1         |- F/ n
                         A. n
                         e. ( 1 ... N )
                              sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. C )
                            = 0
410:408,409:nfan   |- F/ n
                         (  &C37 : ( 0 ... N ) --> QQ
                         /\ A. n
                            e. ( 1 ... N )
                                 sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. C )
                               = 0 )
411:407,410:nfan   |- F/ n
                         (  ph
                         /\ (  &C37 : ( 0 ... N ) --> QQ
                            /\ A. n
                               e. ( 1 ... N )
                                    sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. C )
                                  = 0 ) )
412::rsp           |- (  A. n
                         e. ( 1 ... N )
                              sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. C )
                            = 0
                      -> (  n e. ( 1 ... N )
                         ->   sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. C )
                            = 0 ) )
413:412:imp        |- (  (  A. n
                            e. ( 1 ... N )
                                 sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. C )
                               = 0
                         /\ n e. ( 1 ... N ) )
                      ->   sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. C )
                         = 0 )
414:413:oveq1d     |- (  (  A. n
                            e. ( 1 ... N )
                                 sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. C )
                               = 0
                         /\ n e. ( 1 ... N ) )
                      ->   ( sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. C )
                             x.
                             X )
                         = ( 0 x. X ) )
415:414:adantll    |- (  (  (  &C37 : ( 0 ... N ) --> QQ
                            /\ A. n
                               e. ( 1 ... N )
                                    sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. C )
                                  = 0 )
                         /\ n e. ( 1 ... N ) )
                      ->   ( sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. C )
                             x.
                             X )
                         = ( 0 x. X ) )
416:415:adantll    |- (  (  (  ph
                            /\ (  &C37 : ( 0 ... N ) --> QQ
                               /\ A. n
                                  e. ( 1 ... N )
                                       sum_ k
                                       e.   ( 0 ... N )
                                            ( ( &C37 ` k ) x. C )
                                     = 0 ) )
                         /\ n e. ( 1 ... N ) )
                      ->   ( sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. C )
                             x.
                             X )
                         = ( 0 x. X ) )
417:h3:adantlr     |- (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                         /\ n e. ( 1 ... N ) )
                      -> X e. CC )
418:90,417,112:fsummulc1 
                   |- (  (  ( ph /\ &C37 : ( 0 ... N ) --> QQ )
                         /\ n e. ( 1 ... N ) )
                      ->   ( sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. C )
                             x.
                             X )
                         = sum_ k
                           e.   ( 0 ... N )
                                ( ( ( &C37 ` k ) x. C ) x. X ) )
419:418:adantlrr   |- (  (  (  ph
                            /\ (  &C37 : ( 0 ... N ) --> QQ
                               /\ A. n
                                  e. ( 1 ... N )
                                       sum_ k
                                       e.   ( 0 ... N )
                                            ( ( &C37 ` k ) x. C )
                                     = 0 ) )
                         /\ n e. ( 1 ... N ) )
                      ->   ( sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. C )
                             x.
                             X )
                         = sum_ k
                           e.   ( 0 ... N )
                                ( ( ( &C37 ` k ) x. C ) x. X ) )
420:h3:mul02d      |- (  ( ph /\ n e. ( 1 ... N ) )
                      -> ( 0 x. X ) = 0 )
421:420:adantlr    |- (  (  (  ph
                            /\ (  &C37 : ( 0 ... N ) --> QQ
                               /\ A. n
                                  e. ( 1 ... N )
                                       sum_ k
                                       e.   ( 0 ... N )
                                            ( ( &C37 ` k ) x. C )
                                     = 0 ) )
                         /\ n e. ( 1 ... N ) )
                      -> ( 0 x. X ) = 0 )
422:416,419,421:3eqtr3d 
                   |- (  (  (  ph
                            /\ (  &C37 : ( 0 ... N ) --> QQ
                               /\ A. n
                                  e. ( 1 ... N )
                                       sum_ k
                                       e.   ( 0 ... N )
                                            ( ( &C37 ` k ) x. C )
                                     = 0 ) )
                         /\ n e. ( 1 ... N ) )
                      ->   sum_ k
                           e.   ( 0 ... N )
                                ( ( ( &C37 ` k ) x. C ) x. X )
                         = 0 )
423:422:ex         |- (  (  ph
                         /\ (  &C37 : ( 0 ... N ) --> QQ
                            /\ A. n
                               e. ( 1 ... N )
                                    sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. C )
                                  = 0 ) )
                      -> (  n e. ( 1 ... N )
                         ->   sum_ k
                              e.   ( 0 ... N )
                                   ( ( ( &C37 ` k ) x. C ) x. X )
                            = 0 ) )
424:411,423:ralrimi 
                   |- (  (  ph
                         /\ (  &C37 : ( 0 ... N ) --> QQ
                            /\ A. n
                               e. ( 1 ... N )
                                    sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. C )
                                  = 0 ) )
                      -> A. n
                         e. ( 1 ... N )
                              sum_ k
                              e.   ( 0 ... N )
                                   ( ( ( &C37 ` k ) x. C ) x. X )
                            = 0 )
425:424:sumeq2d    |- (  (  ph
                         /\ (  &C37 : ( 0 ... N ) --> QQ
                            /\ A. n
                               e. ( 1 ... N )
                                    sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. C )
                                  = 0 ) )
                      ->   sum_ n
                           e.   ( 1 ... N )
                                sum_ k
                                e.   ( 0 ... N )
                                     ( ( ( &C37 ` k ) x. C ) x. X )
                         = sum_ n e. ( 1 ... N ) 0 )
426:406,425:eqtrd  |- (  (  ph
                         /\ (  &C37 : ( 0 ... N ) --> QQ
                            /\ A. n
                               e. ( 1 ... N )
                                    sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. C )
                                  = 0 ) )
                      ->   sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. ( A ^ k ) )
                         = sum_ n e. ( 1 ... N ) 0 )
427:24:olci        |- ( ( 1 ... N ) C_ ( ZZ>= ` &C5 ) \/ ( 1 ... N ) e. Fin )
428::sumz          |- (  (  ( 1 ... N ) C_ ( ZZ>= ` &C5 )
                         \/ ( 1 ... N ) e. Fin )
                      -> sum_ n e. ( 1 ... N ) 0 = 0 )
429:427,428:ax-mp  |- sum_ n e. ( 1 ... N ) 0 = 0
430:426,429:syl6eq |- (  (  ph
                         /\ (  &C37 : ( 0 ... N ) --> QQ
                            /\ A. n
                               e. ( 1 ... N )
                                    sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. C )
                                  = 0 ) )
                      ->   sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. ( A ^ k ) )
                         = 0 )
431:380,430:eqtrd  |- (  (  ph
                         /\ (  &C37 : ( 0 ... N ) --> QQ
                            /\ A. n
                               e. ( 1 ... N )
                                    sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. C )
                                  = 0 ) )
                      ->   ( (   &S21
                             e.  CC
                             |-> sum_ k
                                 e.   ( 0 ... N )
                                      ( ( &C37 ` k ) x. ( &S21 ^ k ) ) )
                           ` A )
                         = 0 )
432:431:adantrlr   |- (  (  ph
                         /\ (  (  &C37 : ( 0 ... N ) --> QQ
                               /\ &C37 =/= ( ( 0 ... N ) X. { 0 } ) )
                            /\ A. n
                               e. ( 1 ... N )
                                    sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. C )
                                  = 0 ) )
                      ->   ( (   &S21
                             e.  CC
                             |-> sum_ k
                                 e.   ( 0 ... N )
                                      ( ( &C37 ` k ) x. ( &S21 ^ k ) ) )
                           ` A )
                         = 0 )
433::fveq1         |- (    &S20
                         = (   &S21
                           e.  CC
                           |-> sum_ k
                               e.   ( 0 ... N )
                                    ( ( &C37 ` k ) x. ( &S21 ^ k ) ) )
                      ->   ( &S20 ` A )
                         = ( (   &S21
                             e.  CC
                             |-> sum_ k
                                 e.   ( 0 ... N )
                                      ( ( &C37 ` k ) x. ( &S21 ^ k ) ) )
                           ` A ) )
434:433:eqeq1d     |- (    &S20
                         = (   &S21
                           e.  CC
                           |-> sum_ k
                               e.   ( 0 ... N )
                                    ( ( &C37 ` k ) x. ( &S21 ^ k ) ) )
                      -> (   ( &S20 ` A ) = 0
                         <->   ( (   &S21
                                 e.  CC
                                 |-> sum_ k
                                     e.   ( 0 ... N )
                                          ( ( &C37 ` k ) x. ( &S21 ^ k ) ) )
                               ` A )
                             = 0 ) )
435:434:rspcev     |- (  (     (   &S21
                               e.  CC
                               |-> sum_ k
                                   e.   ( 0 ... N )
                                        ( ( &C37 ` k ) x. ( &S21 ^ k ) ) )
                            e. ( ( Poly ` QQ ) \ { 0p } )
                         /\   ( (   &S21
                                e.  CC
                                |-> sum_ k
                                    e.   ( 0 ... N )
                                         ( ( &C37 ` k ) x. ( &S21 ^ k ) ) )
                              ` A )
                            = 0 )
                      -> E. &S20 e. ( ( Poly ` QQ ) \ { 0p } ) ( &S20 ` A ) = 0
                      )
436:372,432,435:syl2anc 
                   |- (  (  ph
                         /\ (  (  &C37 : ( 0 ... N ) --> QQ
                               /\ &C37 =/= ( ( 0 ... N ) X. { 0 } ) )
                            /\ A. n
                               e. ( 1 ... N )
                                    sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. C )
                                  = 0 ) )
                      -> E. &S20 e. ( ( Poly ` QQ ) \ { 0p } ) ( &S20 ` A ) = 0
                      )
437:273,436:sylanr1 
                   |- (  (  ph
                         /\ (     &C37
                               e. ( ( QQ ^m ( 0 ... N ) )
                                  \ { ( ( 0 ... N ) X. { 0 } ) } )
                            /\ A. n
                               e. ( 1 ... N )
                                    sum_ k e. ( 0 ... N ) ( ( &C37 ` k ) x. C )
                                  = 0 ) )
                      -> E. &S20 e. ( ( Poly ` QQ ) \ { 0p } ) ( &S20 ` A ) = 0
                      )
438:270,437:rexlimddv
439::elqaa         |- (   &C1 e. AA
                      <-> (  &C1 e. CC
                          /\ E. &S19
                             e. ( ( Poly ` QQ ) \ { 0p } )
                                ( &S19 ` &C1 ) = 0 ) )
qed:h1,438,439:sylanbrc |- ( ph -> A e. AA )

$)

-- 
You received this message because you are subscribed to the Google Groups 
"Metamath" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
To view this discussion on the web visit 
https://groups.google.com/d/msgid/metamath/E1jSDZa-0007sF-UH%40rmmprod06.runbox.

Reply via email to