Corrected, whoops

⊢S := S=false
⊢lnc := For all a, ¬(a^¬a)
⊢S=((S=false)=false)
⊢S=(S=true)
⊢(S=true)=(S=false)
⊢ (S=true)=/=(S=false) 
⊢S =/= S
⊢S= ¬S
Case 1:
⊢True=false
⊢True^true
⊢True^false
⊢True^ ¬true
⊢¬lnc
Case 2:
⊢false=true
⊢True^ true
⊢True^false
⊢True^ ¬true
⊢¬lnc

On Sunday, July 12, 2020 at 9:22:29 AM UTC-6 Joseph V wrote:

> Disproof of LNC, feel free to criticize:
> ⊢S := S=false
> ⊢lnc := For all a, ¬(a^¬a)
> ⊢(S=false)=false
> ⊢S=true
> ⊢S=(true=false)
> ⊢S=false
> ⊢S^¬S
> ⊢¬lnc 

-- 
You received this message because you are subscribed to the Google Groups 
"Metamath" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
To view this discussion on the web visit 
https://groups.google.com/d/msgid/metamath/97d07345-df2c-4706-b68c-654307fa86ben%40googlegroups.com.

Reply via email to