I proved the first 100 theorems from set.mm in 38min 42 secs hehe (which is 
just all the implications, excluding the one labeled OLD) you can find the 
video here https://odysee.com/@jiaminglimjm:e/metamath-speedrun:6

Anyone else wanna try? I wanna go sub-30 minutes but I need to be 
incentivised by a little competition. The implications were SUPER fun to 
speedrun. Also, since metamath verifies so quickly, it's fair to those with 
slower computers unlike the other ITPs. I came up with these few rules:

1. No referring to notes during the speedrun
2. Use the original C executable
3. Memorizing prior to speedrun is allowed
4. Proofs can be done in any order, as long as they are the same ones
5. Timer stops when metamath verifies that all proofs are correct

but suggestions are welcome. I haven't tried mmj2 or the OpenAI one yet so 
I don't know if they would be as nice to speedrun on as the original 
verifier/assistant in C.

To be exact about which theorems are used, the .mm file is attached below.

-- 
You received this message because you are subscribed to the Google Groups 
"Metamath" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
To view this discussion on the web visit 
https://groups.google.com/d/msgid/metamath/54dda360-fea5-481f-afc5-d78680ace05dn%40googlegroups.com.
  $c ( $.
  $c ) $.
  $c -> $.
  $c -. $.
  $c wff $.
  $c |- $.

  $v ph $.
  $v ps $.
  $v ch $.
  $v th $.
  $v ta $.
  $v et $.
  $v ze $.
  $v si $.
  $v rh $.
  $v mu $.
  $v la $.
  $v ka $.

  wph $f wff ph $.
  wps $f wff ps $.
  wch $f wff ch $.
  wth $f wff th $.
  wta $f wff ta $.
  wet $f wff et $.
  wze $f wff ze $.
  wsi $f wff si $.
  wrh $f wff rh $.
  wmu $f wff mu $.
  wla $f wff la $.
  wka $f wff ka $.

  ${
    dummylink.1 $e |- ph $.
    dummylink.2 $e |- ps $.
    dummylink $p |- ph $= $.
  $}

  ${
    idi.1 $e |- ph $.
    idi $p |- ph $= $.
  $}
  
  wn $a wff -. ph $.
  wi $a wff ( ph -> ps ) $.

  ${
    min $e |- ph $.
    maj $e |- ( ph -> ps ) $.
    ax-mp $a |- ps $.
  $}
  
  ax-1 $a |- ( ph -> ( ps -> ph ) ) $.
  ax-2 $a |- ( ( ph -> ( ps -> ch ) ) -> ( ( ph -> ps ) -> ( ph -> ch ) ) ) $.
  $( ax-3 $a |- ( ( -. ph -> -. ps ) -> ( ps -> ph ) ) $. $)

  ${
    mp2.1 $e |- ph $.
    mp2.2 $e |- ps $.
    mp2.3 $e |- ( ph -> ( ps -> ch ) ) $.
    mp2 $p |- ch $= $.
  $}

  ${
    mp2b.1 $e |- ph $.
    mp2b.2 $e |- ( ph -> ps ) $.
    mp2b.3 $e |- ( ps -> ch ) $.
    mp2b $p |- ch $= $.
  $}

  ${
    a1i.1 $e |- ph $.
    a1i $p |- ( ps -> ph ) $= $.
  $}

  ${
    2a1i.1 $e |- ph $.
    2a1i $p |- ( ps -> ( ch -> ph ) ) $= $.
  $}

  ${
    mp1i.1 $e |- ph $.
    mp1i.2 $e |- ( ph -> ps ) $.
    mp1i $p |- ( ch -> ps ) $= $.
  $}

  ${
    a2i.1 $e |- ( ph -> ( ps -> ch ) ) $.
    a2i $p |- ( ( ph -> ps ) -> ( ph -> ch ) ) $= $.
  $}

  ${
    mpd.1 $e |- ( ph -> ps ) $.
    mpd.2 $e |- ( ph -> ( ps -> ch ) ) $.
    mpd $p |- ( ph -> ch ) $= $.
  $}

  ${
    imim2i.1 $e |- ( ph -> ps ) $.
    imim2i $p |- ( ( ch -> ph ) -> ( ch -> ps ) ) $= $.
  $}

  ${
    syl.1 $e |- ( ph -> ps ) $.
    syl.2 $e |- ( ps -> ch ) $.   
    syl $p |- ( ph -> ch ) $= $.
  $}

  ${
    3syl.1 $e |- ( ph -> ps ) $.
    3syl.2 $e |- ( ps -> ch ) $.
    3syl.3 $e |- ( ch -> th ) $.
    3syl $p |- ( ph -> th ) $= $.
  $}

  ${
    4syl.1 $e |- ( ph -> ps ) $.
    4syl.2 $e |- ( ps -> ch ) $.
    4syl.3 $e |- ( ch -> th ) $.
    4syl.4 $e |- ( th -> ta ) $.
    4syl $p |- ( ph -> ta ) $= $.
  $}
  
  $( 2a1OLD $p |- ( ph -> ( ps -> ( ch -> ph ) ) ) $= $. $)

  ${
    mpi.1 $e |- ps $.
    mpi.2 $e |- ( ph -> ( ps -> ch ) ) $.
    mpi $p |- ( ph -> ch ) $= $.
  $}

  ${
    mpisyl.1 $e |- ( ph -> ps ) $.
    mpisyl.2 $e |- ch $.
    mpisyl.3 $e |- ( ps -> ( ch -> th ) ) $.
    mpisyl $p |- ( ph -> th ) $= $.
  $}
  
  id $p |- ( ph -> ph ) $= $.
  
  id1 $p |- ( ph -> ph ) $= $.
  
  idd $p |- ( ph -> ( ps -> ps ) ) $= $.

  ${
    a1d.1 $e |- ( ph -> ps ) $.
    a1d $p |- ( ph -> ( ch -> ps ) ) $= $.
  $}

  ${
    2a1d.1 $e |- ( ph -> ps ) $.
    2a1d $p |- ( ph -> ( ch -> ( th -> ps ) ) ) $= $.
  $}
  
  2a1 $p |- ( ph -> ( ps -> ( ch -> ph ) ) ) $= $.

  ${
    a2d.1 $e |- ( ph -> ( ps -> ( ch -> th ) ) ) $.
    a2d $p |- ( ph -> ( ( ps -> ch ) -> ( ps -> th ) ) ) $= $.
  $}

  ${
    sylcom.1 $e |- ( ph -> ( ps -> ch ) ) $.
    sylcom.2 $e |- ( ps -> ( ch -> th ) ) $.
    sylcom $p |- ( ph -> ( ps -> th ) ) $= $.
  $}

  ${
    syl5com.1 $e |- ( ph -> ps ) $.
    syl5com.2 $e |- ( ch -> ( ps -> th ) ) $.
    syl5com $p |- ( ph -> ( ch -> th ) ) $= $.
  $}

  ${
    com12.1 $e |- ( ph -> ( ps -> ch ) ) $.
    com12 $p |- ( ps -> ( ph -> ch ) ) $= $.
  $}

  ${
    syl5.1 $e |- ( ph -> ps ) $.
    syl5.2 $e |- ( ch -> ( ps -> th ) ) $.
    syl5 $p |- ( ch -> ( ph -> th ) ) $= $.
  $}

  ${
    syl6.1 $e |- ( ph -> ( ps -> ch ) ) $.
    syl6.2 $e |- ( ch -> th ) $.
    syl6 $p |- ( ph -> ( ps -> th ) ) $= $.
  $}

  ${
    syl56.1 $e |- ( ph -> ps ) $.
    syl56.2 $e |- ( ch -> ( ps -> th ) ) $.
    syl56.3 $e |- ( th -> ta ) $.
    syl56 $p |- ( ch -> ( ph -> ta ) ) $= $.
  $}

  ${
    syl6com.1 $e |- ( ph -> ( ps -> ch ) ) $.
    syl6com.2 $e |- ( ch -> th ) $.
    syl6com $p |- ( ps -> ( ph -> th ) ) $= $.
  $}

  ${
    mpcom.1 $e |- ( ps -> ph ) $.
    mpcom.2 $e |- ( ph -> ( ps -> ch ) ) $.
    mpcom $p |- ( ps -> ch ) $= $.
  $}

  ${
    syli.1 $e |- ( ps -> ( ph -> ch ) ) $.
    syli.2 $e |- ( ch -> ( ph -> th ) ) $.
    syli $p |- ( ps -> ( ph -> th ) ) $= $.
  $}

  ${
    syl2im.1 $e |- ( ph -> ps ) $.
    syl2im.2 $e |- ( ch -> th ) $.
    syl2im.3 $e |- ( ps -> ( th -> ta ) ) $.
    syl2im $p |- ( ph -> ( ch -> ta ) ) $= $.
  $}
  
  pm2.27 $p |- ( ph -> ( ( ph -> ps ) -> ps ) ) $= $.

  ${
    mpdd.1 $e |- ( ph -> ( ps -> ch ) ) $.
    mpdd.2 $e |- ( ph -> ( ps -> ( ch -> th ) ) ) $.
    mpdd $p |- ( ph -> ( ps -> th ) ) $= $.
  $}

  ${
    mpid.1 $e |- ( ph -> ch ) $.
    mpid.2 $e |- ( ph -> ( ps -> ( ch -> th ) ) ) $.
    mpid $p |- ( ph -> ( ps -> th ) ) $= $.
  $}

  ${
    mpdi.1 $e |- ( ps -> ch ) $.
    mpdi.2 $e |- ( ph -> ( ps -> ( ch -> th ) ) ) $.
    mpdi $p |- ( ph -> ( ps -> th ) ) $= $.
  $}

  ${
    mpii.1 $e |- ch $.
    mpii.2 $e |- ( ph -> ( ps -> ( ch -> th ) ) ) $.
    mpii $p |- ( ph -> ( ps -> th ) ) $= $.
  $}

  ${
    syld.1 $e |- ( ph -> ( ps -> ch ) ) $.
    syld.2 $e |- ( ph -> ( ch -> th ) ) $.
    syld $p |- ( ph -> ( ps -> th ) ) $= $.
  $}

  ${
    mp2d.1 $e |- ( ph -> ps ) $.
    mp2d.2 $e |- ( ph -> ch ) $.
    mp2d.3 $e |- ( ph -> ( ps -> ( ch -> th ) ) ) $.
    mp2d $p |- ( ph -> th ) $= $.
  $}

  ${
    a1dd.1 $e |- ( ph -> ( ps -> ch ) ) $.
    a1dd $p |- ( ph -> ( ps -> ( th -> ch ) ) ) $= $.
  $}

  ${
    2a1dd.1 $e |- ( ph -> ( ps -> ch ) ) $.
    2a1dd $p |- ( ph -> ( ps -> ( th -> ( ta -> ch ) ) ) ) $= $.
  $}

  ${
    pm2.43i.1 $e |- ( ph -> ( ph -> ps ) ) $.
    pm2.43i $p |- ( ph -> ps ) $= $.
  $}

  ${
    pm2.43d.1 $e |- ( ph -> ( ps -> ( ps -> ch ) ) ) $.
    pm2.43d $p |- ( ph -> ( ps -> ch ) ) $= $.
  $}

  ${
    pm2.43a.1 $e |- ( ps -> ( ph -> ( ps -> ch ) ) ) $.
    pm2.43a $p |- ( ps -> ( ph -> ch ) ) $= $.
  $}

  ${
    pm2.43b.1 $e |- ( ps -> ( ph -> ( ps -> ch ) ) ) $.
    pm2.43b $p |- ( ph -> ( ps -> ch ) ) $= $.
  $}
  
  pm2.43 $p |- ( ( ph -> ( ph -> ps ) ) -> ( ph -> ps ) ) $= $.

  ${
    imim2d.1 $e |- ( ph -> ( ps -> ch ) ) $.
    imim2d $p |- ( ph -> ( ( th -> ps ) -> ( th -> ch ) ) ) $= $.
  $}
  
  imim2 $p |- ( ( ph -> ps ) -> ( ( ch -> ph ) -> ( ch -> ps ) ) ) $= $.

  ${
    embantd.1 $e |- ( ph -> ps ) $.
    embantd.2 $e |- ( ph -> ( ch -> th ) ) $.
    embantd $p |- ( ph -> ( ( ps -> ch ) -> th ) ) $= $.
  $}

  ${
    3syld.1 $e |- ( ph -> ( ps -> ch ) ) $.
    3syld.2 $e |- ( ph -> ( ch -> th ) ) $.
    3syld.3 $e |- ( ph -> ( th -> ta ) ) $.
    3syld $p |- ( ph -> ( ps -> ta ) ) $= $.
  $}

  ${
    sylsyld.1 $e |- ( ph -> ps ) $.
    sylsyld.2 $e |- ( ph -> ( ch -> th ) ) $.
    sylsyld.3 $e |- ( ps -> ( th -> ta ) ) $.
    sylsyld $p |- ( ph -> ( ch -> ta ) ) $= $.
  $}

  ${
    imim12i.1 $e |- ( ph -> ps ) $.
    imim12i.2 $e |- ( ch -> th ) $.
    imim12i $p |- ( ( ps -> ch ) -> ( ph -> th ) ) $= $.
  $}

  ${
    imim1i.1 $e |- ( ph -> ps ) $.
    imim1i $p |- ( ( ps -> ch ) -> ( ph -> ch ) ) $= $.
  $}

  ${
    imim3i.1 $e |- ( ph -> ( ps -> ch ) ) $.
    imim3i $p |- ( ( th -> ph ) -> ( ( th -> ps ) -> ( th -> ch ) ) ) $= $.
  $}

  ${
    sylc.1 $e |- ( ph -> ps ) $.
    sylc.2 $e |- ( ph -> ch ) $.
    sylc.3 $e |- ( ps -> ( ch -> th ) ) $.
    sylc $p |- ( ph -> th ) $= $.
  $}

  ${
    syl3c.1 $e |- ( ph -> ps ) $.
    syl3c.2 $e |- ( ph -> ch ) $.
    syl3c.3 $e |- ( ph -> th ) $.
    syl3c.4 $e |- ( ps -> ( ch -> ( th -> ta ) ) ) $.
    syl3c $p |- ( ph -> ta ) $= $.
  $}

  ${
    syl6mpi.1 $e |- ( ph -> ( ps -> ch ) ) $.
    syl6mpi.2 $e |- th $.
    syl6mpi.3 $e |- ( ch -> ( th -> ta ) ) $.
    syl6mpi $p |- ( ph -> ( ps -> ta ) ) $= $.
  $}

  ${
    mpsyl.1 $e |- ph $.
    mpsyl.2 $e |- ( ps -> ch ) $.
    mpsyl.3 $e |- ( ph -> ( ch -> th ) ) $.
    mpsyl $p |- ( ps -> th ) $= $.
  $}

  ${
    syl6c.1 $e |- ( ph -> ( ps -> ch ) ) $.
    syl6c.2 $e |- ( ph -> ( ps -> th ) ) $.
    syl6c.3 $e |- ( ch -> ( th -> ta ) ) $.
    syl6c $p |- ( ph -> ( ps -> ta ) ) $= $.
  $}

  ${
    syl6ci.1 $e |- ( ph -> ( ps -> ch ) ) $.
    syl6ci.2 $e |- ( ph -> th ) $.
    syl6ci.3 $e |- ( ch -> ( th -> ta ) ) $.
    syl6ci $p |- ( ph -> ( ps -> ta ) ) $= $.
  $}

  ${
    syldd.1 $e |- ( ph -> ( ps -> ( ch -> th ) ) ) $.
    syldd.2 $e |- ( ph -> ( ps -> ( th -> ta ) ) ) $.
    syldd $p |- ( ph -> ( ps -> ( ch -> ta ) ) ) $= $.
  $}

  ${
    syl5d.1 $e |- ( ph -> ( ps -> ch ) ) $.
    syl5d.2 $e |- ( ph -> ( th -> ( ch -> ta ) ) ) $.
    syl5d $p |- ( ph -> ( th -> ( ps -> ta ) ) ) $= $.
  $}

  ${
    syl7.1 $e |- ( ph -> ps ) $.
    syl7.2 $e |- ( ch -> ( th -> ( ps -> ta ) ) ) $.
    syl7 $p |- ( ch -> ( th -> ( ph -> ta ) ) ) $= $.
  $}

  ${
    syl6d.1 $e |- ( ph -> ( ps -> ( ch -> th ) ) ) $.
    syl6d.2 $e |- ( ph -> ( th -> ta ) ) $.
    syl6d $p |- ( ph -> ( ps -> ( ch -> ta ) ) ) $= $.
  $}

  ${
    syl8.1 $e |- ( ph -> ( ps -> ( ch -> th ) ) ) $.
    syl8.2 $e |- ( th -> ta ) $.
    syl8 $p |- ( ph -> ( ps -> ( ch -> ta ) ) ) $= $.
  $}

  ${
    syl9.1 $e |- ( ph -> ( ps -> ch ) ) $.
    syl9.2 $e |- ( th -> ( ch -> ta ) ) $.
    syl9 $p |- ( ph -> ( th -> ( ps -> ta ) ) ) $= $.
  $}

  ${
    syl9r.1 $e |- ( ph -> ( ps -> ch ) ) $.
    syl9r.2 $e |- ( th -> ( ch -> ta ) ) $.
    syl9r $p |- ( th -> ( ph -> ( ps -> ta ) ) ) $= $.
  $}

  ${
    syl10.1 $e |- ( ph -> ( ps -> ch ) ) $.
    syl10.2 $e |- ( ph -> ( ps -> ( th -> ta ) ) ) $.
    syl10.3 $e |- ( ch -> ( ta -> et ) ) $.
    syl10 $p |- ( ph -> ( ps -> ( th -> et ) ) ) $= $.
  $}

  ${
    a1ddd.1 $e |- ( ph -> ( ps -> ( ch -> ta ) ) ) $.
    a1ddd $p |- ( ph -> ( ps -> ( ch -> ( th -> ta ) ) ) ) $= $.
  $}

  ${
    imim12d.1 $e |- ( ph -> ( ps -> ch ) ) $.
    imim12d.2 $e |- ( ph -> ( th -> ta ) ) $.
    imim12d $p |- ( ph -> ( ( ch -> th ) -> ( ps -> ta ) ) ) $= $.
  $}

  ${
    imim1d.1 $e |- ( ph -> ( ps -> ch ) ) $.
    imim1d $p |- ( ph -> ( ( ch -> th ) -> ( ps -> th ) ) ) $= $.
  $}
  
  imim1 $p |- ( ( ph -> ps ) -> ( ( ps -> ch ) -> ( ph -> ch ) ) ) $= $.
  
  pm2.83 $p |- ( ( ph -> ( ps -> ch ) )
      -> ( ( ph -> ( ch -> th ) ) -> ( ph -> ( ps -> th ) ) ) ) $= $.

  ${
    com3.1 $e |- ( ph -> ( ps -> ( ch -> th ) ) ) $.
    com23 $p |- ( ph -> ( ch -> ( ps -> th ) ) ) $= $.
    com3r $p |- ( ch -> ( ph -> ( ps -> th ) ) ) $= $.
    com13 $p |- ( ch -> ( ps -> ( ph -> th ) ) ) $= $.
    com3l $p |- ( ps -> ( ch -> ( ph -> th ) ) ) $= $.
  $}
  
  pm2.04 $p |- ( ( ph -> ( ps -> ch ) ) -> ( ps -> ( ph -> ch ) ) ) $= $.

  ${
    com4.1 $e |- ( ph -> ( ps -> ( ch -> ( th -> ta ) ) ) ) $.
    com34 $p |- ( ph -> ( ps -> ( th -> ( ch -> ta ) ) ) ) $= $.
    com4l $p |- ( ps -> ( ch -> ( th -> ( ph -> ta ) ) ) ) $= $.
    com4t $p |- ( ch -> ( th -> ( ph -> ( ps -> ta ) ) ) ) $= $.
    com4r $p |- ( th -> ( ph -> ( ps -> ( ch -> ta ) ) ) ) $= $.
    com24 $p |- ( ph -> ( th -> ( ch -> ( ps -> ta ) ) ) ) $= $.
    com14 $p |- ( th -> ( ps -> ( ch -> ( ph -> ta ) ) ) ) $= $.
  $}

  ${
    com5.1 $e |- ( ph -> ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) ) $.
    com45 $p |- ( ph -> ( ps -> ( ch -> ( ta -> ( th -> et ) ) ) ) ) $= $.
    com35 $p |- ( ph -> ( ps -> ( ta -> ( th -> ( ch -> et ) ) ) ) ) $= $.
    com25 $p |- ( ph -> ( ta -> ( ch -> ( th -> ( ps -> et ) ) ) ) ) $= $.
    com5l $p |- ( ps -> ( ch -> ( th -> ( ta -> ( ph -> et ) ) ) ) ) $= $.
    com15 $p |- ( ta -> ( ps -> ( ch -> ( th -> ( ph -> et ) ) ) ) ) $= $.
    com52l $p |- ( ch -> ( th -> ( ta -> ( ph -> ( ps -> et ) ) ) ) ) $= $.
    com52r $p |- ( th -> ( ta -> ( ph -> ( ps -> ( ch -> et ) ) ) ) ) $= $.
    com5r $p |- ( ta -> ( ph -> ( ps -> ( ch -> ( th -> et ) ) ) ) ) $= $.
  $}
  
  imim12 $p |- ( ( ph -> ps ) ->
                      ( ( ch -> th ) -> ( ( ps -> ch ) -> ( ph -> th ) ) ) ) $= $.
  
  jarr $p |- ( ( ( ph -> ps ) -> ch ) -> ( ps -> ch ) ) $= $.

  ${
    pm2.86d.1 $e |- ( ph -> ( ( ps -> ch ) -> ( ps -> th ) ) ) $.
    pm2.86d $p |- ( ph -> ( ps -> ( ch -> th ) ) ) $= $.
  $}
  
  pm2.86 $p |- ( ( ( ph -> ps ) -> ( ph -> ch ) ) ->
                                                    ( ph -> ( ps -> ch ) ) ) $= $.

  ${
    pm2.86i.1 $e |- ( ( ph -> ps ) -> ( ph -> ch ) ) $.
    pm2.86i $p |- ( ph -> ( ps -> ch ) ) $= $.
    pm2.86iALT $p |- ( ph -> ( ps -> ch ) ) $= $.
  $}
  
  loolin $p |- ( ( ( ph -> ps ) -> ( ps -> ph ) ) -> ( ps -> ph ) ) $= $.
  loowoz $p |- ( ( ( ph -> ps ) -> ( ph -> ch ) )
      -> ( ( ps -> ph ) -> ( ps -> ch ) ) ) $= $.

Reply via email to