I don't know if this will help, but I found proofs of mpi and a1d from 
welsh's second axiom:
MM> show proof w2mpi
16     min=w2luk2  $p |- ( ( -. ps -> ps ) -> ps )
19     maj=w2ax1   $p |- ( ( ( -. ps -> ps ) -> ps ) -> ( -. ch -> ( ( -. 
ps ->
                                                               ps ) -> ps ) 
) )
20   min=ax-mp   $a |- ( -. ch -> ( ( -. ps -> ps ) -> ps ) )
29     min=w2mpi.2 $e |- ( ps -> ( ph -> ch ) )
34       min=w2mpi.1 $e |- ph
40       maj=ax-w2   $a |- ( ph -> ( ( ps -> ( ph -> ch ) ) -> ( ( -. ch -> 
( (
                                  -. ps -> ps ) -> ps ) ) -> ( ps -> ch ) ) 
) )
41     maj=ax-mp   $a |- ( ( ps -> ( ph -> ch ) ) -> ( ( -. ch -> ( ( -. ps 
->
                                             ps ) -> ps ) ) -> ( ps -> ch ) 
) )
42   maj=ax-mp   $a |- ( ( -. ch -> ( ( -. ps -> ps ) -> ps ) ) -> ( ps -> 
ch )
                                                                            
  )
43 w2mpi=ax-mp $a |- ( ps -> ch )

MM> show proof w2a1d
17     min=w2luk2    $p |- ( ( -. ch -> ch ) -> ch )
20     maj=w2ax1     $p |- ( ( ( -. ch -> ch ) -> ch ) -> ( -. ps -> ( ( -. 
ch
                                                            -> ch ) -> ch ) 
) )
21   w2mpi.1=ax-mp $a |- ( -. ps -> ( ( -. ch -> ch ) -> ch ) )
33       min=w2a1d.1   $e |- ( ph -> ps )
36       maj=w2ax1     $p |- ( ( ph -> ps ) -> ( ch -> ( ph -> ps ) ) )
37     w2mpi.1=ax-mp $a |- ( ch -> ( ph -> ps ) )
43     w2mpi.2=ax-w2 $a |- ( ph -> ( ( ch -> ( ph -> ps ) ) -> ( ( -. ps -> 
( (
                                  -. ch -> ch ) -> ch ) ) -> ( ch -> ps ) ) 
) )
44   w2mpi.2=w2mpi $p |- ( ph -> ( ( -. ps -> ( ( -. ch -> ch ) -> ch ) ) 
-> (
                                                                 ch -> ps ) 
) )
45 w2a1d=w2mpi   $p |- ( ph -> ( ch -> ps ) )

-- 
You received this message because you are subscribed to the Google Groups 
"Metamath" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
To view this discussion on the web visit 
https://groups.google.com/d/msgid/metamath/2a5c8275-18a9-4c00-af2a-3f4d76be6768n%40googlegroups.com.

Reply via email to