I take it back, you can get away with  { x | ( F ` x ) = 4 } , here's the 
proof  (but for your larger goal, I doubt it's enough)

h1::temp3.1             |- F = ( x e. RR |-> ( ( ( k x. ( x ^ 2 ) ) - ( ( 2 
x. k ) x. x ) ) + l ) )
h2::temp3.2          |- { x | ( F ` x ) = 4 } = { a , b }
3::fveq2              |- ( x = a -> ( F ` x ) = ( F ` a ) )
4:3:eqeq1d           |- ( x = a -> ( ( F ` x ) = 4 <-> ( F ` a ) = 4 ) )
5::vex               |- a e. _V
6::nfmpt1               |- F/_ x ( x e. RR |-> ( ( ( k x. ( x ^ 2 ) ) - ( ( 
2 x. k ) x. x ) ) + l ) )
7:1,6:nfcxfr           |- F/_ x F
8::nfcv                |- F/_ x a
9:7,8:nffv            |- F/_ x ( F ` a )
10:9:nfeq1           |- F/ x ( F ` a ) = 4
11:10,5,4:elabf     |- ( a e. { x | ( F ` x ) = 4 } <-> ( F ` a ) = 4 )
12::vex               |- a e. _V
13:12:prid1          |- a e. { a , b }
14:13,2:eleqtrri    |- a e. { x | ( F ` x ) = 4 }
qed:14,11:mpbi     |- ( F ` a ) = 4

$= ( cv cfv c4 wceq cab wcel cpr vex cr c2 co cmul prid1 cexp cmin caddc 
nfmpt1
   eleqtrri cmpt nfcxfr nfcv nffv nfeq1 fveq2 eqeq1d elabf mpbi ) 
DIZAIZCJZKLZA
  
 MZNUPCJZKLZUPUPEIZOUTUPVCDPZUAHUFUSVBAUPAVAKAUPCACAQBIZUQRUBSTSRVETSUQTSUCSF
   IUDSZUGGAQVFUEUHAUPUIUJUKVDUQUPLURVAKUQUPCULUMUNUO $.

$d a x

Il giorno lunedì 14 ottobre 2024 alle 13:53:35 UTC+2 Glauco ha scritto:

> Since the
>
> $d F x
>
> constraint would conflict with your F definition, here is an alternative 
> version
>
>
> h1::temp3.1              |- F = ( x e. RR |-> ( ( ( k x. ( x ^ 2 ) ) - ( ( 
> 2 x. k ) x. x ) ) + l ) )
> h2::temp3.2           |- { x e. RR | ( F ` x ) = 4 } = { a , b }
> 3::fveq2               |- ( x = a -> ( F ` x ) = ( F ` a ) )
> 4:3:eqeq1d            |- ( x = a -> ( ( F ` x ) = 4 <-> ( F ` a ) = 4 ) )
> 5::nfcv                 |- F/_ x a
> 6::nfcv               |- F/_ x RR
> 7::nfmpt1                |- F/_ x ( x e. RR |-> ( ( ( k x. ( x ^ 2 ) ) - ( 
> ( 2 x. k ) x. x ) ) + l ) )
> 8:1,7:nfcxfr            |- F/_ x F
> 9:8,5:nffv             |- F/_ x ( F ` a )
> 10:9:nfeq1            |- F/ x ( F ` a ) = 4
> 11:5,6,10,4:elrabf   |- ( a e. { x e. RR | ( F ` x ) = 4 } <-> ( a e. RR 
> /\ ( F ` a ) = 4 ) )
> 12::vex                |- a e. _V
> 13:12:prid1           |- a e. { a , b }
> 14:13,2:eleqtrri     |- a e. { x e. RR | ( F ` x ) = 4 }
> 15:14,11:mpbi       |- ( a e. RR /\ ( F ` a ) = 4 )
> qed:15:simpri      |- ( F ` a ) = 4
>
> $= ( cv cr wcel cfv c4 wceq crab wa nfcv c2 co cmul cpr vex prid1 eleqtrri 
> cexp
>    cmin caddc cmpt nfmpt1 nfcxfr nffv nfeq1 fveq2 eqeq1d elrabf mpbi 
> simpri ) D
>   
>  IZJKZURCLZMNZURAIZCLZMNZAJOZKUSVAPURUREIZUAVEURVFDUBUCHUDVDVAAURJAURQZAJQAUT
>   
>  MAURCACAJBIZVBRUESTSRVHTSVBTSUFSFIUGSZUHGAJVIUIUJVGUKULVBURNVCUTMVBURCUMUNUO
>    UPUQ $.
>
> $d a x
>
> Il giorno lunedì 14 ottobre 2024 alle 13:42:45 UTC+2 Glauco ha scritto:
>
>> Hi Jorge,
>>
>> with Yamma you get something like this  (I doubt you can get away with { 
>> x | ( F ` x ) = 4 }, for instance ( F ` +oo ) is not "well-defined" )
>>
>> ```
>> $theorem temp3
>>
>> * comments
>>
>> h1::temp3.1           |- { x e. RR | ( F ` x ) = 4 } = { a , b }
>> 2::fveq2               |- ( x = a -> ( F ` x ) = ( F ` a ) )
>> 3:2:eqeq1d            |- ( x = a -> ( ( F ` x ) = 4 <-> ( F ` a ) = 4 ) )
>> 4:3:elrab            |- ( a e. { x e. RR | ( F ` x ) = 4 } <-> ( a e. RR 
>> /\ ( F ` a ) = 4 ) )
>> 5::vex                 |- a e. _V
>> 6:5:prid1             |- a e. { a , b }
>> 7:6,1:eleqtrri       |- a e. { x e. RR | ( F ` x ) = 4 }
>> 8:7,4:mpbi          |- ( a e. RR /\ ( F ` a ) = 4 )
>> qed:8:simpri       |- ( F ` a ) = 4
>>
>> $= ( cv cr wcel cfv c4 wceq crab wa cpr vex prid1 eleqtrri fveq2 eqeq1d 
>> elrab
>>    mpbi simpri ) 
>> CFZGHZUCBIZJKZUCAFZBIZJKZAGLZHUDUFMUCUCDFZNUJUCUKCOPEQUIUFAUCG
>>    UGUCKUHUEJUGUCBRSTUAUB $.
>>
>> $d F x
>> $d a x
>> ```   
>>     
>>   
>>
>>
>> Il giorno lunedì 14 ottobre 2024 alle 12:40:47 UTC+2 [email protected] 
>> ha scritto:
>>
>>> I wanted to check how far I can get in formalizing this problem and its 
>>> solution. But I stuck in the very beginning.
>>>
>>>
>>> Firstly, I formalized the initial conditions as Mario suggested:
>>>
>>>
>>> hyp1: |- 0 < k
>>>
>>> hyp2: |- 0 < l
>>>
>>> hyp3: |- F = ( x e. RR |-> ( ( ( k x. ( x ^ 2 ) ) - ( ( 2 x. k ) x. x ) 
>>> ) + l ) )
>>>
>>> hyp4: |- { x | ( F ` x ) = 4 } = { a , b }
>>>
>>> hyp5: |- ( ( ( a - b ) ^ 2 ) + ( ( ( F ` a ) - ( F ` b ) ) ^ 2 ) ) = ( 6 
>>> ^ 2 )
>>>
>>> hyp6: |- ( ( ( a ^ 2 ) + ( ( F ` a ) ^ 2 ) ) + ( ( b ^ 2 ) + ( ( F ` b ) 
>>> ^ 2 ) ) ) = c
>>>
>>>
>>> I used { a , b } instead of { A , B } because then I can easily prove |- 
>>> a e. _V, which is used in the proof below. Also, as I understand, a and 
>>> b represent x-coordinates of the corresponding points.
>>>
>>>
>>> Next, I wanted to simplify hyp5, by proving that F(a) = F(b) = 4, so the 
>>> hyp5 would be |- ( ( a - b ) ^ 2 ) = ( 6 ^ 2 ). But that’s where I am 
>>> stuck. I can prove |- [ a / x ] ( F ` x ) = 4 which looks a right 
>>> direction to move in:
>>>
>>>
>>> 1|     | vex     | |- a e. _V
>>>
>>> 2| 1   | prid1   | |- a e. { a , b }
>>>
>>> 3|     | hyp4    | |- { x | ( F ` x ) = 4 } = { a , b }
>>>
>>> 4| 3   | eleq2i  | |- ( a e. { x | ( F ` x ) = 4 } <-> a e. { a , b } )
>>>
>>> 5| 2,4 | mpbir   | |- a e. { x | ( F ` x ) = 4 }
>>>
>>> 6|     | df-clab | |- ( a e. { x | ( F ` x ) = 4 } <-> [ a / x ] ( F ` x 
>>> ) = 4 )
>>>
>>> 7| 5,6 | mpbi    | |- [ a / x ] ( F ` x ) = 4
>>>
>>>
>>> But I still cannot prove |- ( F ` a ) = 4. Any suggestions what 
>>> approaches I can try to prove this?
>>>
>>> On Sunday, July 28, 2024 at 11:54:47 PM UTC+2 [email protected] wrote:
>>>
>>>> On Sun, Jul 28, 2024 at 11:43 PM Glauco <[email protected]> wrote:
>>>>
>>>>> I maybe wrong, but my feeling is that what Jagra calls A , in Mario's 
>>>>> translation is actually < A , 4 >   (or < A, F(A) > , if you prefer).
>>>>
>>>>
>>>> I meant it to be interpreted as <A, F(A)>, and part of the proof would 
>>>> be showing that F(A) = 4 so that the rest of the statement simplifies. 
>>>> (But 
>>>> that would seem to be part of the proof, not the formalization of the 
>>>> statement, if we want to read it literally.)
>>>>
>>>>

-- 
You received this message because you are subscribed to the Google Groups 
"Metamath" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
To view this discussion on the web visit 
https://groups.google.com/d/msgid/metamath/161f583c-22bf-4699-b663-92652793f9c3n%40googlegroups.com.

Reply via email to