Hi Anh

* Looking for MT/NLP opportunities *
Hieu Hoang
http://moses-smt.org/


On 12 March 2017 at 23:44, Tran Anh <[email protected]> wrote:

> I have done experiments with Factored model. The tuning and testing is
> done with source text annotated with the same factors as during the
> training. The target text is clean, without factors.
>
> I found that my factored model (bleu score = 22.2) higher than bleu score
> of Baseline = 21.11(no factor).
> Training command has translation factors and generation factors steps:
> (......--translation-factors 0-0+1-1+2-2 --generation-factors 2,3-0.....).
>
> *This is moses.ini file (trainig is finished, but notyet tuning):*
>
> #########################
> ### MOSES CONFIG FILE ###
> #########################
>
> # input factors
> [input-factors]
> 0
> 1
> 2
>
> # mapping steps
> [mapping]
> 0 T 0
> 0 T 1
> 0 T 2
>
> [distortion-limit]
> 6
>
> # feature functions
> [feature]
> UnknownWordPenalty
> WordPenalty
> PhrasePenalty
> PhraseDictionaryMemory name=TranslationModel0 num-features=4
> path=/home/yychen/55factor-hz4new-VC/train2-ge3/train/model/phrase-table.0-0.gz
> input-factor=0 output-factor=0
> PhraseDictionaryMemory name=TranslationModel1 num-features=4
> path=/home/yychen/55factor-hz4new-VC/train2-ge3/train/model/phrase-table.1-1.gz
> input-factor=1 output-factor=1
> PhraseDictionaryMemory name=TranslationModel2 num-features=4
> path=/home/yychen/55factor-hz4new-VC/train2-ge3/train/model/phrase-table.2-2.gz
> input-factor=2 output-factor=2
> Generation name=GenerationModel0 num-features=2
> path=/home/yychen/55factor-hz4new-VC/train2-ge3/train/model/generation.2,3-0.gz
> input-factor=2,3 output-factor=0
> LexicalReordering name=LexicalReordering0 num-features=6
> type=wbe-msd-bidirectional-fe-allff input-factor=0 output-factor=0
> path=/home/yychen/55factor-hz4new-VC/train2-ge3/train/model/
> reordering-table.0-0.wbe-msd-bidirectional-fe.gz
> Distortion
> KENLM lazyken=0 name=LM0 factor=0 path=/home/yychen/55factor-hz4
> new-VC/train2-ge3/vi-ch.lm.ch order=3
>
> # dense weights for feature functions
> [weight]
> # The default weights are NOT optimized for translation quality. You MUST
> tune the weights.
> # Documentation for tuning is here: http://www.statmt.org/
> moses/?n=FactoredTraining.Tuning
> UnknownWordPenalty0= 1
> WordPenalty0= -1
> PhrasePenalty0= 0.2
> TranslationModel0= 0.2 0.2 0.2 0.2
> TranslationModel1= 0.2 0.2 0.2 0.2
> TranslationModel2= 0.2 0.2 0.2 0.2
> GenerationModel0= 0.3 0
> LexicalReordering0= 0.3 0.3 0.3 0.3 0.3 0.3
> Distortion0= 0.3
> LM0= 0.5
>
>
> *This is moses.ini file (tuning is finished):*
>
> # MERT optimized configuration
> # decoder /opt/moses/bin/moses
> # BLEU 0.200847 on dev /home/yychen/55factor-hz4new-V
> C/tun2-ge3/vi.tun4-new
> # We were before running iteration 4
> # finished 2017年 01月 08日 星期日 19:51:49 CST
> ### MOSES CONFIG FILE ###
> #########################
>
> # input factors
> [input-factors]
> 0
> 1
> 2
>
> # mapping steps
> [mapping]
> 0 T 0
>
>
>
> #[decoding-graph-backoff]
> #0
> #1
>
Why did you comment out this section? Did you retune it after you comment
it out?

>
> [distortion-limit]
> 6
>
> # feature functions
> [feature]
> UnknownWordPenalty
> WordPenalty
> PhrasePenalty
> PhraseDictionaryMemory name=TranslationModel0 num-features=4
> path=/home/yychen/55factor-hz4new-VC/train2-ge3/train/model/phrase-table.0-0.gz
> input-factor=0 output-factor=0
> PhraseDictionaryMemory name=TranslationModel1 num-features=4
> path=/home/yychen/55factor-hz4new-VC/train2-ge3/train/model/phrase-table.1-1.gz
> input-factor=1 output-factor=1
> PhraseDictionaryMemory name=TranslationModel2 num-features=4
> path=/home/yychen/55factor-hz4new-VC/train2-ge3/train/model/phrase-table.2-2.gz
> input-factor=2 output-factor=2
> Generation name=GenerationModel0 num-features=2
> path=/home/yychen/55factor-hz4new-VC/train2-ge3/train/model/generation.2,3-0.gz
> input-factor=2,3 output-factor=0
> LexicalReordering name=LexicalReordering0 num-features=6
> type=wbe-msd-bidirectional-fe-allff input-factor=0 output-factor=0
> path=/home/yychen/55factor-hz4new-VC/train2-ge3/train/model/
> reordering-table.0-0.wbe-msd-bidirectional-fe.gz
> Distortion
> KENLM lazyken=0 name=LM0 factor=0 path=/home/yychen/55factor-hz4
> new-VC/train2-ge3/vi-ch.lm.ch order=3
>
> # dense weights for feature functions
> [weight]
>
> LexicalReordering0= 0.0421305 0.0145905 0.0421305 0.0419472 0.0571605
> 0.110762
> Distortion0= 0.0357908
> LM0= 0.0702177
> WordPenalty0= -0.140435
> PhrasePenalty0= 0.037449
> TranslationModel0= 0.00820789 0.0280871 0.117941 -0.00550954
> TranslationModel1= 0.0280871 0.0273782 -0.0150248 0.0280871
> TranslationModel2= 0.0453928 0.00576192 0.0280871 0.0276907
> GenerationModel0= 0.0421305 0
> UnknownWordPenalty0= 1
>
> Here, I want to try translate "  留 学 生 " in source language to target
> language by using n-best.
> However, I want to demonstrate why that result is better BASELINE, by
> using n-best (% moses -f moses.ini -n-best-list listfile2 < in).
> When tuning process is finished, i tried to translate some resource
> sentences to target sentences. But, parameters of TranslationModel0 ( map
> 0-0) is changed, while the parameters of (TranslationModel1,
> TranslationModel2, GenerationModel0) are 0 0 0 0. Translation results is
> as follows . *(here, n = 2)**:*
>
>
>
> 0 ||| 留 学 生  ||| LexicalReordering0= -1.60944 0 0 0 0 0 Distortion0= 0
> LM0= -15.2278 LM1= -699.809 WordPenalty0= -3 PhrasePenalty0= 1
> TranslationModel0= -1.38629 -2.20651 0 -2.21554 *TranslationModel1= 0 0 0
> 0 TranslationModel2= 0 0 0 0 GenerationModel0= 0 0* ||| -0.589076
> 0 ||| 留 学 生  ||| LexicalReordering0= -1.86048 0 0 -0.510826 0 0
> Distortion0= 0 LM0= -15.2278  LM1= -699.809 WordPenalty0= -3
> PhrasePenalty0= 2 TranslationModel0= -2.86909 -2.20651 -0.09912 -2.21554 
> *TranslationModel1=
> 0 0 0 0 TranslationModel2= 0 0 0 0 GenerationModel0= 0 0* ||| -0.727864
>
> I want to compare my factored model with baseline at every translation
> step in SMT to explain why my model is good.
> So I want to ask you:
>
> 1. Can you explain for me why that parameters are 0 0 0 0.?
> 2. My factors which I added to factored model are useful or not?
> 3. How to get the parameters in translation result (n-best) of
> *TranslationModel1, **TranslationModel2, **GenerationModel0* is different
> to 0 0 0 0?
>
Start with a simple, non-factored mode and make sure it worksl. Build it up
slowly, adding a phrase-table or generation table at each step. Retune at
each step

>
> i am waiting for you reply ~~!
> Thank you so much!
> With best regards,
>
> Tran Anh,
>
> _______________________________________________
> Moses-support mailing list
> [email protected]
> http://mailman.mit.edu/mailman/listinfo/moses-support
>
>
_______________________________________________
Moses-support mailing list
[email protected]
http://mailman.mit.edu/mailman/listinfo/moses-support

Reply via email to