Finally, I managed to call custom cuda kernels from Nim.
[Gist](https://gist.github.com/mratsim/dfbd944f64181727a97dffb30b8cbd0a).
Well, basically I lost the fights to:
1. Metaprogramming Cuda from Nim. I would have to prevent Nim from
"optimizing" the Cuda part and using CPU optimization.
2. Getting a pointer to the function on the GPU. My attempts returned the
pointer to the function on the host which is useless …
3. Calling the GPU function directly by emitting Nim C code. I would have to
emit the Cuda function in the same file so either as text or metaprogramming.
And ended up writing C but oh well.
The code:
**square.cu**
#include "square.cuh"
__global__ void square(float * d_out, float * d_in){
int idx = threadIdx.x;
float f = d_in[idx];
d_out[idx] = f * f;
}
void cuda_square(int bpg, int tpb, float * d_out, float * d_in){
square<<<bpg,tpb>>>(d_out, d_in);
}
**square.cuh**
#include "cuda.h"
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
void cuda_square(int bpg, int tpb, float * d_out, float * d_in);
**call_cuda.nim**
import nimcuda/[cuda_runtime_api, driver_types, nimcuda]
import sequtils, future
type GpuArray[T: SomeReal] = object
data: ref[ptr T]
len: int
{.compile: "./square.cu".}
proc cuda_square(bpg, tpb: cint, y: ptr cfloat, x: ptr cfloat) {.importc,
header:"../square.cuh".}
#../square.cuh is a workaround because header is not copied to nimcache
## Compute the square of x and store it in y
## bpg: BlocksPerGrid
## tpb: ThreadsPerBlock
proc cudaMalloc[T](size: int): ptr T {.noSideEffect.}=
let s = size * sizeof(T)
check cudaMalloc(cast[ptr pointer](addr result), s)
proc deallocCuda[T](p: ref[ptr T]) {.noSideEffect.}=
if not p[].isNil:
check cudaFree(p[])
proc newGpuArray[T: SomeReal](len: int): GpuArray[T] {.noSideEffect.}=
new(result.data, deallocCuda)
result.len = len
result.data[] = cudaMalloc[T](result.len)
proc cuda[T:SomeReal](s: seq[T]): GpuArray[T] {.noSideEffect.}=
result = newGpuArray[T](s.len)
let size = result.len * sizeof(T)
check cudaMemCpy(result.data[],
unsafeAddr s[0],
size,
cudaMemcpyHostToDevice)
proc cpu[T:SomeReal](g: GpuArray[T]): seq[T] {.noSideEffect.}=
result = newSeq[T](g.len)
let size = result.len * sizeof(T)
check cudaMemCpy(addr result[0],
g.data[],
size,
cudaMemcpyDeviceToHost)
proc main() =
let a = newSeq[float32](64)
let b = toSeq(0..63).map(x => x.float32)
echo a
echo b
var u = a.cuda
let v = b.cuda
cuda_square(1.cint, 64.cint, u.data[],v.data[])
check cudaDeviceSynchronize()
let z = u.cpu
echo z
main()
## Output:
# @[0.0, 0.0, 0.0, 0.0, 0.0, ...]
# @[0.0, 1.0, 2.0, 3.0, 4.0, ...]
# @[0.0, 1.0, 4.0, 9.0, 16.0, ...]
Thanks andrea, jcosborn and Araq in particular for tooling and inspiration.